A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane
- Corresponding author: XU Yan, xuyan8787@163.com
Citation:
XU Yan, DU Xi-hua, LI Jing, WANG Peng, ZHU Jie, GE Feng-juan, ZHOU Jun, SONG Ming, ZHU Wen-you. A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(2): 199-208.
CABALLERO A, PEREZ P J. Methane as raw material in synthetic chemistry:The final frontier[J]. Chem Soc Rev, 2013,42(23):8809-8820. doi: 10.1039/c3cs60120j
OLSBYE U. Single-pass catalytic conversion of syngas into olefins via methanol[J]. Angew Chem Int Ed, 2016,55(26):7294-7295. doi: 10.1002/anie.201603064
VENVIK H J, YANG J. Catalysis in microstructured reactors:Short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products[J]. Catal Today, 2017,285:135-146. doi: 10.1016/j.cattod.2017.02.014
ALI K A, ABDULLAH A Z, MOHAMED A R. Recent development in catalytic technologies for methanol synthesis from renewable sources:A critical review[J]. Renewable Sustainable Energy Rev, 2015,44(32):508-518.
HU J, YU F, LU Y. Application of Fischer-Tropsch synthesis in biomass to liquid conversion[J]. Catalysts, 2012,2(2):303-326. doi: 10.3390/catal2020303
USMAN M, DAUD W M A W, ABBAS H F. Application of Fischer-Tropsch synthesis in biomass to liquid conversion[J]. Renewable Sustainable Energy Rev, 2015,45:710-744. doi: 10.1016/j.rser.2015.02.026
SHAH Y T, GARDNER T H. Dry reforming of hydrocarbon feedstocks[J]. Catal Rev, 2014,56(4):476-536. doi: 10.1080/01614940.2014.946848
MURAZA O, GALADIMA A. A review on coke management during dry reforming of methane[J]. Int J Energy Res, 2015,39(9):1196-1216. doi: 10.1002/er.v39.9
ABDULLAH B, GHANI N A A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod, 2017,162:170-185. doi: 10.1016/j.jclepro.2017.05.176
ZHANG X, YANG C, ZHANG Y, XU Y, SHANG S, YIN Y. Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane[J]. Int J Hydrogen Energy, 2015,40(46):16115-16126. doi: 10.1016/j.ijhydene.2015.09.150
DAS S, ASHOK J, BIAN Z, DEWANGAN N, WAI M H, DU Y, BORGNA A, HIDAJAT K, KAWI S. Silica-ceria sandwiched ni core-shell catalyst for low temperature dry reforming of biogas:Coke resistance and mechanistic insights[J]. Appl Catal B:Environ, 2018,230:220-236. doi: 10.1016/j.apcatb.2018.02.041
DAI C, ZHANG S, ZHANG A, SONG C, SHI C, GUO X. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. J Mater Chem A, 2015,3(32):16461-16468. doi: 10.1039/C5TA03565A
WANG C Z, SI L J, LI H, WEN X, SUN N N, ZHAO N, WEI W, SUN Y H. Template-free one-pot synthesis of mesoporous Ni-CaO-ZrO2 catalyst and its application in CH4-CO2 reforming[J]. J Fuel Chem Technol, 2013,41(10):1204-1209. doi: 10.1016/S1872-5813(13)60049-3
WANG C Z, SUN N N, ZHAO N, WEI W, ZHAO Y X. Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane[J]. Catal Today, 2017,281:268-275. doi: 10.1016/j.cattod.2016.03.026
WANG C Z, SUN N N, ZHAO N, WEI W, SUN Y H, SUN C G, LIU H, SNAPE C E. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane:A study under different feeding compositions[J]. Fuel, 2015,143:527-535. doi: 10.1016/j.fuel.2014.11.097
HUANG X, JI C, WANG C Z, XIAO F K, ZHAO N, SUN N N, WEI W, SUN Y H. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catal Today, 2017,281:241-249. doi: 10.1016/j.cattod.2016.02.064
HUANG X, XUE G X, WANG C Z, ZHAO N, SUN N N, WEI W, SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2016,6:449-459. doi: 10.1039/C5CY01171J
WANG C Z, QIU Y, ZHANG X M, ZHANG Y, SUN N N, ZHAO Y X. Geometric art of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability:Enhanced confinement effect over nickel site anchoring inside capsule shell with appropriate inner cavity[J]. Catal Sci Technol, 2018,8:4877-4890. doi: 10.1039/C8CY01158C
YANG W W, LIU H M, LI Y M, ZHANG J, WU H, HE D H. Properties of yolk-shell structured Ni@SiO2 nanocatalyst and its catalytic performance in carbon dioxide reforming of methane to syngas[J]. Catal Today, 2016,259:438-445. doi: 10.1016/j.cattod.2015.04.012
DAS S, ASHOK J, BIAN Z, DEWANGAN N, WAI M H, DU Y, BORGNA A, HIDAJAT K, KAWI S. Silica-ceria sandwiched ni core-shell catalyst for low temperature dry reforming of biogas:Coke resistance and mechanistic insights[J]. Appl Catal B:Environ, 2018,230:220-236.
WANG Y S, FANG Q, SHEN W H, ZHU Z Q, FANG Y J. (Ni/MgAl2O4)@SiO2 core-shell catalyst with high coke-resistance for the dry reforming of methane[J]. React Kinet Mech Catal, 2018,125(1):127-139. doi: 10.1007/s11144-018-1404-2
PU J L, LUO Y, WANG N N, BAO H X, WANG X H, QIAN E W. Ceria-promoted Ni@Al2O3 core-shell catalyst for steam reforming of acetic acid with enhanced activity and coke resistance[J]. Int J Hydrogen Energy, 2018,43(6):3142-3153. doi: 10.1016/j.ijhydene.2017.12.136
CHAI Y, FU Y, FENG H, KONG W, YUAN C, PAN B, ZHANG J, SUN Y. Ni-based perovskite catalyst with a bimodal size distribution of Ni Particles for dry reforming of methane[J]. ChemCatChem, 2018,9(10):2078-2086.
BAUDOUIN D, RODEMERCK U, KRUMEICH F, MALLMANN A D, SZETO K C, MÉNARD H, YEYRE L, CANDY J P, WEBB P B, THIEULEUX C, COPÉRET C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles[J]. J Catal, 2013,297(1):27-34.
GONZALEZDELACRUZ V M, PEREÑIGUEZ R, TERNERO F, HOLGADO J P, CABALLERO A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts[J]. ACS Catal, 2013,1(2):82-88.
DAOURA O, KAYDOUH M N, EI-HASSAN N, MASSIANI P, LAUNAY F, BOUTROS M. Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 by CO2[J]. J CO2 Util, 2018,24:112-119. doi: 10.1016/j.jcou.2017.12.010
KIM W Y, LEE Y H, PARK H, CHOI Y H, LEE M H, LEE J S. Coke tolerance of Ni/Al2O3 nanosheet catalyst for dry reforming of methane[J]. Catal Sci Technol, 2016,6(7):2060-2064. doi: 10.1039/C6CY00017G
AL-FATESH A S, ARAFAT Y, ATIA H, IBRAHIM A A, HA Q L M, SCHNEIDER M, M-POHL M, FAKEEHS A H. CO2 reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst:Effect of support modifiers (Mg, La and Sc) on catalytic stability[J]. J CO2 Util, 2017,21:395-404. doi: 10.1016/j.jcou.2017.08.001
MO W, MA F, LIU Y, LIU J, ZHONG M, NULAHONG A. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas[J]. Int J Hydrogen Energy, 2015,40(46):16147-16158. doi: 10.1016/j.ijhydene.2015.09.149
JEONG M G, KIM S Y, KIM D H, HAN S W, KIM I H, LEE M, HWANG Y K, KIM Y D. High-performing and durable MgO/Ni catalysts via atomic layer deposition for CO2 reforming of methane (CRM)[J]. Appl Catal A:Gen, 2016,515:45-50. doi: 10.1016/j.apcata.2016.01.032
ZENG S, ZHANG X, FU X, ZHANG L, SU H, PAN H. Co/CexZr1-xO2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane[J]. Appl Catal B:Environ, 2013,136-137:308-316. doi: 10.1016/j.apcatb.2013.02.019
SAHA B, KHAN A, IBRAHIM H, IDEM R. Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas[J]. Fuel, 2014,120(1):202-217.
CHEN X, JIANG J, TIAN S, LI K. Biogas dry reforming for syngas production:Catalytic performance of nickel supported on waste-derived SiO2[J]. Catal Sci Technol, 2015,5(2):860-868. doi: 10.1039/C4CY01126K
SUN G B, HIDAJAT K, WU X S, KAWI S. A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts[J]. Appl Catal B:Environ, 2008,81(3):303-312.
OEMAR U, KATHIRASER Y, MO L, HO X K, KAWI S. CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts:Mechanism and kinetic modelling[J]. Catal Sci Technol, 2016,6(4):1173-1186. doi: 10.1039/C5CY00906E
GOULA M A, CHARISIOU N D, PAPAGERIDIS K N, DELIMITIS A, PACHATOURIDOU E, ILIOPOULOU E F. Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction:Influence of the synthesis method[J]. Int J Hydrogen Energy, 2015,40(30):9183-9200. doi: 10.1016/j.ijhydene.2015.05.129
LI Z, KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4:Influence of Ni precursors on structure, sintering and carbon resistance[J]. Catal Sci Technol, 2018,8(7):1915-1922. doi: 10.1039/C8CY00024G
ZHANG C, YUE H, HUANG Z, LI S, WU G, MA X, GONG J. Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2:Enhanced metal-support interaction and catalytic stability[J]. ACS Sustainable Chem Eng, 2013,1(1):161-173. doi: 10.1021/sc300081q
LIU C J, YE J Y, JIANG J J, PAN Y X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011,3(3):529-541. doi: 10.1002/cctc.v3.3
NUMAGUCHI T, EIDA H, SHOJI K. Reduction of NiAl2O4containing catalysts for steam methane reforming reaction[J]. Int J Hydrogen Energy, 1997,22(12):1111-1115. doi: 10.1016/S0360-3199(97)00007-4
YANG M, JIN P, FAN Y, HUANG C, ZHANG N, WENG W, CHEN M, WAN H. Ammonia-assisted synthesis towards a phyllosilicate-derived high-dispersed and long-lived Ni/SiO2 catalyst[J]. Catal Sci Technol, 2015,5(12):5095-5099. doi: 10.1039/C5CY01361E
WO H, DEARN K D, SONG R, HU E, XU Y, HU X. Morphology, composition and structure of carbon deposits from diesel and biomass oil/diesel blends on a pintle-type fuel injector nozzle[J]. Tribol Int, 2015,91:189-196. doi: 10.1016/j.triboint.2015.07.003
ALEKSANDROV H A, PEGIOS N, PALKOVITS R, SIMENONV K, VAYSSILOV G N. Elucidation of the higher coking resistance of small versus large nickel nanoparticles in methane dry reforming via computational modeling[J]. Catal Sci Technol, 2017,7(15):3339-3347. doi: 10.1039/C7CY00773F
WANG C Z, SUN N N, ZHAO N, WEI W, ZHANG J, ZHAO T J, SUN Y H, SUN C G, LIU H, SNAPE C E. The properties of individual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem, 2014,6(2):640-648. doi: 10.1002/cctc.v6.2
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
(a) and (c): Ni/SiO2 catalyst; (b) and (d): Ni/Al2O3 catalyst
(a) and (b): Ni/Al2O3 catalyst; (c) and (d): Ni/SiO2 catalyst