Citation: ZHANG Guang-hua, GUO Jing, ZHANG Wan-bin, DU Lun, ZHU Jun-feng, ZHANG Xue, DONG Qiu-chen. Hydrophobic modification of Xinjiang lignite to improve its slurryability[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 257-265. shu

Hydrophobic modification of Xinjiang lignite to improve its slurryability

  • Corresponding author: ZHANG Guang-hua, zhanggh@sust.edu.cn
  • Received Date: 6 November 2019
    Revised Date: 3 February 2020

    Fund Project: Key Research and Development Plan of Shaanxi Province 2020GY-232Fund Project of the Education Department of Shaanxi Province 18JS014The project was supported by the National Natural Science Foundation of China (21176148), Key Research and Development Plan of Shaanxi Province (2020GY-232) and Fund Project of the Education Department of Shaanxi Province (18JS014)The project was supported by the National Natural Science Foundation of China 21176148

Figures(8)

  • The abundant pore structure and large number of oxygen-containing groups cause high water content of lignite, which limit its efficient utilization. In this paper, high concentration, low viscosity and high stability coal water slurry was prepared by hydrophobic modification of low rank coal to make it have the property of high rank coal. Using anionic surfactant sodium stearate and nonionic surfactant OP-10 as emulsifier emulsified alkyl ketene dimer (AKD), anionic AKD modifier and non-ionic AKD modifier were prepared, which were coated on the surface of microwave drying coal to improve the hydrophobic properties of coal particles. The surface properties of coal particles before and after modification such as chemical composition, pore distribution, hydrophobic properties and Zeta potential were studied. Combined with the adsorption results of NSF dispersant on the surface of coal particles before and after modification, the slurryability, rheology and stability of lignite coal water slurry were discussed. It is found that surface of the modified coal particles has higher carbon content and lower oxygen content, while their pore volumes are reduced, the contact angles of coal-water interface are increased, and hydrophobicity of the coal particles is enhanced. The adsorption capacity of NSF dispersant on surface of modified coal increases, which makes the surface electronegativity of coal particles increases, and coal particles have better dispersion effect in water. The maximum concentrations of CWS prepared by anionic AKD modified coal and non-ionic AKD modified coal increase from 56.6% of raw coal to 61.0% and 62.5% respectively, and the water evolution rates of CWS decrease from 13.97% of raw coal to 7.45% and 7.89% respectively. At the same time, the CWS prepared by modified coal particles show shear-thinning pseudoplastic fluid. Overall, the physical and chemical properties of coal particles have significantly changes after modification, and high-quality slurry fuels with high solid concentration, superior pseudo-plastic behavior, and good stability are easier to be prepared.
  • 加载中
    1. [1]

      WANG J, LIU J, WANG S, CHENG J. Slurrying property and mechanism of coal-coal gasification wastewater-slurry[J]. Energy Fuels, 2018,32(4):4833-4840.  

    2. [2]

      YU J L, TAHMASEBI A, HAN Y N, YIN F K, LI X C. A review on water in low rank coals:The existence interaction with coal structure and effects on coal utilization[J]. Fuel Process Technol, 2013,106(2):9-20.  

    3. [3]

      ZHANG Da-zhou, LU Wen-xin, CHEN Feng-jing, XIA Wu, ZUO Jing, WANG Zhi-gang, SHANG Kuan-xiang. Recent developments in recovery and utilization of water and heat from lignite dewatering[J]. Chem Ind Eng Prog, 2016,35(2):472-478.  

    4. [4]

      ALLARDICE D J, CLEMOW L M, FAVAS G, JACKSON W R, MARSHALL M, SAKUROVS R. The characterisation of different forms of water in low rank coals and some hydrothermally dried products[J]. Fuel, 2003,82(6):661-667.  

    5. [5]

      JANGAM S V, KARTHIKEYAN M, MUJUMDAR A S. A critical assessment of industrial coal drying technologies:Role of energy, emissions, risk and sustainability[J]. Dry Technol, 2011,29(4):395-407.  

    6. [6]

      DINCER H, BOYLU F, SIRKECI A A, ATESOK G. The effect of chemicals on the viscosity and stability of coal water slurries[J]. Int J Miner Process, 2003,70(1):41-51.  

    7. [7]

      WU Jun-hong. Hydrothermal dewatering of lignite to improve the slurry-ability, rheology, and stability of coal-water slurry[J]. J Fuel Chem Technol, 2019,47(3):25-32.  

    8. [8]

      FU J, WANG J. Enhanced slurryability and rheological behaviors of two low-rank coals by thermal and hydrothermal pretreatments[J]. Power Technol, 2014,266:183-190.  

    9. [9]

      MEIKAP B C, PUROHIT N K, MAHADEVAN V. Effect of microwave pretreatment of coal for improvement of rheological characteristics of coal-water slurries[J]. J Colloid Interface Sci, 2005,281(1):225-235.  

    10. [10]

      LIU J, WU J, ZHU J, WANG Z, ZHOU J, CEN K. Removal of oxygen functional groups in lignite by hydrothermal dewatering:An experimental and DFT study[J]. Fuel, 2016,178(15):85-92.  

    11. [11]

      ZHANG X P, ZHANG C, TAN P, LI X, FANG Q Y, CHEN G. Effects of hydrothermal upgrading on the physicochemical structure and gasification characteristics of Zhundong coal[J]. Fuel Process Technol, 2018,172:200-208.  

    12. [12]

      ZHOU Z J, LI X, LIANG J, LIANG J M, LIU J Z. Surface coating improves coal-water slurry formation of Shangwan coal[J]. Energy Fuels, 2011,25(8):3590-3597.  

    13. [13]

      GANI A, MORISHITA K, NISHIKAWA K, NARUSE I. Characteristics of co-combustion of low-rank coal with biomass[J]. Energy Fuels, 2005,19(4):1652-1659.  

    14. [14]

      BAE J S, LEE D W, LEE Y J, PARKET S J, PARK J H, HONG J C, KIM J G, YOON S P, KIM H T, HAN C, CHOI Y C. Improvement in coal content of coal-water slurry using hybrid coal impregnated with molasses[J]. Power Technol, 2014,254:72-77.  

    15. [15]

      GUO Jing, ZHANG Guang-hua, ZHANG Wan-bin, ZHU Jun-feng, WU Jiang, DU Lun. Effect on surface hydrophobic modification and slurribility of lignite coal by alkyl ketone dimer[J]. Chem Ind Eng Progress, 2019,38(10):4705-4711.  

    16. [16]

      GU T Y, WU G G, LI Q H, SUN Z Q, ZENG F, WANG G Y, MENG X L. Blended coals for improved coal water slurries[J]. J China Univ Min Technol, 2008,18(1):50-54.  

    17. [17]

      PARK J H, LEE J H, JIN M H, PARK S J, LEE D W, BAE J S, KIM J G, SONG K H, CHOI Y C. Enhancement of slurryability and heating value of coal water slurry (CWS) by torrefaction treatment of low rank coal (LRC)[J]. Fuel, 2017,203(1):403-410.  

    18. [18]

      GAO Z F, ZHU S Q, ZHENG M D, WU Z J, LU H H, LIU W M. Effects of fractal surface on rheological behavior and combustion kinetics of modified brown coal water slurries[J]. J China Coal Soc, 2015,3(3):211-222.  

    19. [19]

      ZHU Jun-feng, LI Yuan-bo, ZHANG Guang-hua, WANG Rui. Action mechanism and effect of side chain length of polycarboxylate dispersant on disperse-on of coal-water slurries[J]. Chem Ind, 2015,66(10):4202-4210.  

    20. [20]

      YANG Dong-jie, GUO Wen-yuan, LI Xu-zhao. Effects of molecular weight of grafted sulfonated lignin on its dispersion and adsorption properties as a dispersant for coal water slurries[J]. J Fuel Chem Technol, 2013,41(1):20-25.  

    21. [21]

      WANG R K, MA Q Q, YE X M, LI C X, ZHAO ZH. Preparing coal slurry from coking wastewater to achieve resource utilization:slurrying mechanism of coking wastewater-coal slurry[J]. Sci Tot Environ, 2019,650(2):1678-1687.  

    22. [22]

      LI D, LIU J Z, WANG J Q, BAI Q C, CHENG J, CEN K F. Experimental studies on coal water slurries prepared from coal gasification wastewater[J]. Asia-Pac J Chem Eng, 2017,13(1).  

    23. [23]

      DAN Pan, QIU Xue-qing, ZHOU Ming-song. Temperature and shearing time influenced to viscosity and rheological behavior of coal water slurry[J]. Coal Sci Technol, 2008,36(6):103-106.  

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    14. [14]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    17. [17]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    20. [20]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

Metrics
  • PDF Downloads(4)
  • Abstract views(1472)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return