Citation: QIU Jian, JIANG Zhiwei, XING Haiping, LI Minggang, LIU Jie, TANG Tao. Preparation and Electromagnetic Shielding Properties of Polypropylene/Carbon Nanotubes Composites with Segregated Structure[J]. Chinese Journal of Applied Chemistry, ;2020, 37(8): 904-911. shu

Preparation and Electromagnetic Shielding Properties of Polypropylene/Carbon Nanotubes Composites with Segregated Structure

  • Corresponding author: XING Haiping, hpxing@ciac.ac.cn TANG Tao, ttang@ciac.ac.cn
  • Received Date: 20 March 2020
    Revised Date: 27 March 2020
    Accepted Date: 2 April 2020

    Fund Project: the Plan of Science and Technology of Jilin Province 20170203006GXthe National Natural Science Foundation of China 51573179the National Natural Science Foundation of China 51991353Supported by the National Natural Science Foundation of China(No.51573179, No.51991353), and the Plan of Science and Technology of Jilin Province(No.20170203006GX)

Figures(6)

  • Constructing segregated structure in polypropylene (PP)/carbon nanotubes (CNTs) composites via co-extrusion coating-compression molding technique is an effective way to achieve high electromagnetic interference shielding with low percolation threshold. Among them, CNTs are randomly distributed inside PP matrix to form conductive composites, which is coated on the outer surface of pure PP to form a segregated structure. The results show that the PP/CNTs composites exhibit an excellent electromagnetic interference shielding effectiveness (EMI SE) of 25.6 dB at 5.6% (mass fraction) of CNTs, and high-performance electrical conductivity with a low percolation threshold of 0.28% (volume fraction) CNTs. Furthermore the PP/CNTs composites have excellent mechanical properties. In a word, the co-extrusion coating-compression molding technique is a facile and green method, which plays a role in developing high-performance electromagnetic shielding composites.
  • 加载中
    1. [1]

      Thomassin J M, Pardoen T, Bailly C. Polymer/Carbon Based Composites as Electromagnetic Interference(EMI) Shielding Materials[J]. Mat Sci Eng R, 2013,74(7):211-232. doi: 10.1016/j.mser.2013.06.001

    2. [2]

      Yan D X, Pang H, Li B. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-efficient Electromagnetic Interference Shielding[J]. Adv Funct Mater, 2015,25(4):559-566. doi: 10.1002/adfm.201403809

    3. [3]

      Pang H, Xu L, Li Z M. Conductive Polymer Composites with Segregated Structures[J]. Prog Polym Sci, 2014,39(11):1908-1933. doi: 10.1016/j.progpolymsci.2014.07.007

    4. [4]

      Feng D, Xu D W, Wang Q Q. Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering[J]. J Mater Chem C, 2019,7(26):7938-7946. doi: 10.1039/C9TC02311A

    5. [5]

      Wang G L, Mark L H, Park C B. Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications[J]. ACS Appl Mater Interfaces, 2018,10(1):1195-1203. doi: 10.1021/acsami.7b14111

    6. [6]

      Yu W C, Xu J Z, Li Z M. Constructing Highly Oriented Segregated Structure Towards High-Strength Carbon Nanotube/Ultrahigh-Molecular-Weight Polyethylene Composites for Electromagnetic Interference Shielding[J]. Compos Part A-Appl Sci Manuf, 2018,110:237-245. doi: 10.1016/j.compositesa.2018.05.004

    7. [7]

      Mamunya Y, Matzui L, Vovchenko L. Influence of Conductive Nano-and Microfiller Distribution on Electrical Conductivity and EMI Shielding Properties of Polymer/Carbon Composites[J]. Compos Sci Technol, 2019,170:51-59. doi: 10.1016/j.compscitech.2018.11.037

    8. [8]

      Xu D W, Wang Q Q, Liu P J. Facile Fabrication of Multifunctional Poly(ethylene-co-octene)/Carbon Nanotube Foams Based on Tunable Conductive Network[J]. Ind Eng Chem Res, 2020,59(5):1934-1943. doi: 10.1021/acs.iecr.9b06163

    9. [9]

      Chen J, Liao X, Li G X. Facile and Green Method to Structure Ultralow-Threshold and Lightweight Polystyrene/MWCNT Composites with Segregated Conductive Networks for Efficient Electromagnetic Interference Shielding[J]. ACS Sustainable Chem Eng, 2019,7(11):9904-9915. doi: 10.1021/acssuschemeng.9b00678

    10. [10]

      Zhang K, Yu HO, Gao Y. A Facile Approach to Constructing Efficiently Segregated Conductive Networks in Poly(Lactic Acid)/Silver Nanocomposites via Silver Plating on Microfibers for Electromagnetic Interference Shielding[J]. Compos Sci Technol, 2018,156:136-143. doi: 10.1016/j.compscitech.2017.12.037

    11. [11]

      Hu H L, Zhang G, Zhao Z D. Preparation and Electrical Conductivity of Graphene/Ultrahigh Molecular Weight Polyethylene Composites with a Segregated Structure[J]. Carbon, 2012,50:4596-4599. doi: 10.1016/j.carbon.2012.05.045

    12. [12]

      Oren R, Paul N B, Joachim L. Preparation of Conductive Nanotube-Polymer Composites Using Later Technology[J]. Adv Mater, 2004,16(3):248-251. doi: 10.1002/adma.200305728

    13. [13]

      Al-Saleh M H, Sundararaj U. An Innovative Method to Reduce Percolation Threshold of Carbon Black Filled Immiscible Polymer Blends[J]. Compos Part A-Appl Sci Manuf, 2008,39(2):284-293. doi: 10.1016/j.compositesa.2007.10.010

    14. [14]

      Wu H Y, Jia L C, Li Z M. Simultaneously Improved Electromagnetic Interference Shielding and Mechanical Performance of Segregated Carbon Nanotube/Polypropylene Composite via Solid Phase Molding[J]. Compos Sci Technol, 2018,156:87-94. doi: 10.1016/j.compscitech.2017.12.027

    15. [15]

      Wu H Y, Zhang Y P, Li Z M. Injection Molded Segregated Carbon Nanotube/Polypropylene Composite for Efficient Electromagnetic Interference Shielding[J]. Ind Eng Chem Res, 2018,57(37):12378-12385. doi: 10.1021/acs.iecr.8b02293

    16. [16]

      Zhang R, Baxendale M, Peijs T. Universal Resistivity-Strain Dependence of Carbon Nanotube/Polymer Composites[J]. Phys Rev B, 2007,76:195433-195437. doi: 10.1103/PhysRevB.76.195433

    17. [17]

      Deng H, Lin L, Fu Q. Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials[J]. Prog Polym Sci, 2014,39(4):627-655. doi: 10.1016/j.progpolymsci.2013.07.007

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    13. [13]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(17)
  • Abstract views(1332)
  • HTML views(401)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return