Citation: GAO Jian, SU Sheng, XU Kai, CUI Xiao-ning, LIU Li-jun, ZHANG Chun-xiu, WANG Yi, HU Song, XIANG Jun. Effect of temperature and water vapor on the form and evolution characteristics of nitrogen in coal char[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 8-13. shu

Effect of temperature and water vapor on the form and evolution characteristics of nitrogen in coal char

  • Corresponding author: SU Sheng, susheng@mail.hust.edu.cn
  • Received Date: 5 September 2018
    Revised Date: 10 November 2018

    Fund Project: the National Natural Science Foundation of China 51576081The project was supported by the National Natural Science Foundation of China (51576081) and Science and Technology Project of Shenzhen (JCYJ20170307172446325)Science and Technology Project of Shenzhen JCYJ20170307172446325

Figures(8)

  • Studying the evolution and transformation of different forms of nitrogen in pyrolysis under water vapor atmosphere is conducive to control formation of nitrogen oxides. X-ray photoelectron spectroscopy (XPS) was used to examine forms of nitrogen in typical bituminous coal and its char, and effects of temperature, water vapor on evolution and conversion characteristics of coal nitrogen were investigated. The results indicate that raising temperature and concentration of water vapor are conducive to evolution of char nitrogen. When concentration of water vapor reaches 30%, the char nitrogen evolution reaches a peak. The presence of water vapor facilitates the evolution of N-5 and N-6 from coal char and suppresses that of N-Q and N-X, because the gasification effect of water vapor is beneficial to breaking aromatic structure, but the conversion of N-6 to N-Q and N-X is promoted as a result of H and OH groups brought by the high concentration of water vapor.
  • 加载中
    1. [1]

      CHE De-fu. Thermal Coal-N Transformation and Nitrogen Oxide Generation[M]. Xi'an:Xi'an Jiaotong University Press, 2013.

    2. [2]

      KAMBARA S, TAKARADA T, TOYOSHIMA M, KATO K. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel, 1995,74(9):1247-1253. doi: 10.1016/0016-2361(95)00090-R

    3. [3]

      KAMBARA S, TAKARADA T, YAMAMOTO Y, KATO K. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOx) precursors during rapid pyrolysis[J]. Energy Fuels, 1993,7(6):1013-1020. doi: 10.1021/ef00042a045

    4. [4]

      NELSON P F, BUCKLEY A N, KELLY M D. Functional forms of nitrogen in coals and the release of coal nitrogen as NOx precursors (HCN and NH3)[J]. Symp Combust, 1992,24(1):1259-1267.  

    5. [5]

      NELSON P F, KELLY M D, WORNAT M J. Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating conditions[J]. Fuel, 1991,70(3):403-407.  

    6. [6]

      LI C Z, NELSON P F, LEDESMA E B, MACKIE J C. An experimental study of the release of nitrogen from coals pyrolyzed in fluidized-bed reactors[J]. Symp Combust, 1996,26(2):3205-3211.  

    7. [7]

      YAO Ming-yu, LIU Yan-hua, CHE De-fu. Investigation on effects of oxygen on the transformation of Yibin coal nitrogen functionality[J]. Combust Sci Technol, 2004,10(4):336-340. doi: 10.3321/j.issn:1006-8740.2004.04.010

    8. [8]

      ZHANG Y, ZHANG J, SHENG C, CHEN J, LIU Y, ZHAO L, XIE F. X-ray photoelectron spectroscopy (XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2 and O2/Ar atmospheres[J]. Energy Fuels, 2010,25(1):240-245.  

    9. [9]

      WÓJTOWICZ M A, PELS J R, MOULIJN J A. The fate of nitrogen functionalities in coal during pyrolysis and combustion[J]. Fuel, 1995,74(4):507-516.  

    10. [10]

      FRIEBEL J, KÖPSEL R F W. The fate of nitrogen during pyrolysis of German low rank coals-A parameter study[J]. Fuel, 1999,78(8):923-932. doi: 10.1016/S0016-2361(99)00008-3

    11. [11]

      YOU Zhuo. NOx control and efficiency optimization of oxy-fuel combustion system[D]. Hangzhou: Zhejiang University, 2013. 

    12. [12]

      WANG Ben. The release characteristics and chemical kinetics simulation of typical coals in oxy-fuel combustion[D]. Wuhan: Huazhong University of Science and Technology, 2012. 

    13. [13]

      ZOU C, HE Y, SONG Y, HAN Q, LIU Y, GUO F, ZHENG C. The characteristics and mechanism of the NO formation during oxy-steam combustion[J]. Fuel, 2015,158:874-883. doi: 10.1016/j.fuel.2015.06.034

    14. [14]

      HUANG Xiang-yong, HUANG Che, LI Xiao-chuan, SUN Jing-bao, LIU Ye-ming. Conversion characteristics of fuel nitrogen functionalities under atmosphere of high concentration of CO2[J]. J North China Electric Power Univ(Nat Sci Ed), 2016,43(6):97-101. doi: 10.3969/j.ISSN.1007-2691.2016.06.15

    15. [15]

      WANG Zong-hua. Research on form transformation and releasing regulation of fuel-N during pyrolysis and gasification[D]. Wuhan: Huazhong University of Science and Technology, 2011. 

    16. [16]

      XU Jun, SUN Zhi-jun, XIONG Zhe, TANG Hao, LIU Jia-wei, SU Sheng, HU Song, WANG Yi, XU Kai, XIANG Jun. Effects of steam on the char structures under CO2/H2O atmospheres[J]. J Eng Thermophys-Rus, 2017(11):2467-2471.  

    17. [17]

      XU J, SU S, SUN Z, SI N, QING M, LIU L, HU S, WANG Y, TANG H. Effects of H2O gasification reaction on the characteristics of chars under oxy-fuel combustion conditions with wet recycle[J]. Energy Fuels, 2016,30(11):9071-9079. doi: 10.1021/acs.energyfuels.6b01725

    18. [18]

      KELEMEN S R, GORBATY M L, KWIATEK P J. Quantification of nitrogen forms in Argonne premium coals[J]. Energy Fuels, 1994,8(4):896-906.  

    19. [19]

      LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui. XPS study on transformation of N and S functional groups during pyrolysis of high sulfur New Zealand coal[J]. J Fuel Chem Technol, 2013,41(11):1287-1293.  

    20. [20]

      ZHU Hong-bin, NI Yan-hui, TANG Li-hua, ZHENG Zhi-sheng, ZHU Zi-bin. Research of coal flash hydropyrolysis Ⅵ.chemical type analysis of nitrogen in coal and semi-coke[J]. J Fuel Chem Technol, 2001,29(2):124-128. doi: 10.3969/j.issn.0253-2409.2001.02.007

  • 加载中
    1. [1]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    7. [7]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    8. [8]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    9. [9]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    12. [12]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    13. [13]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

Metrics
  • PDF Downloads(5)
  • Abstract views(2410)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return