Citation: LI Wei, LIU Zhi-wei, XIE Xin-an, SUN Jiao, FAN Di, WEI Xing. Effects of diphenylethene on products produced during cornstalk cellulose liquefaction in supercritical ethanol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1064-1073. shu

Effects of diphenylethene on products produced during cornstalk cellulose liquefaction in supercritical ethanol

  • Corresponding author: XIE Xin-an, xinanxie@scau.edu.cn
  • Received Date: 19 April 2017
    Revised Date: 1 July 2017

    Fund Project: Guangdong Provincial Science and Technology Program Foundation of China 2014A010106024National Natural Science Foundation of China 21576107The project was supported by the National Natural Science Foundation of China (21576107) and Guangdong Provincial Science and Technology Program Foundation of China (2014A010106024)

Figures(10)

  • With 1, 1-diphenylethene (DPE) as the polymerization inhibitor, the effects of DPE concentration (dosage) and reaction temperature on the active fragments transforming to liquefaction products during cellulose liquefaction in supercritical ethanol were investigated using an autoclave. As the DPE concentration increases, the yield of volatile compounds decreases by 25.4%, while the yield of bio-oil increases to 39.8%, and the cellulose conversion rate decreases gradually. With the increasing of reaction temperature, the cellulose conversion rate reaches to 85.5% sharply and the volatile compounds also increases fastly, but the maximum bio-oil yield drops to 34.6%. GC-MS analysis shows that ketones, esters, alkanes, alcohols, acids and the DPE derivatives are dominant platform chemicals in the bio-oil. A lot of active fragments (such as CH3CH2-, HO-, H-, CH3-, etc.) produced from cellulose pyrolysis in supercritical ethanol are trapped by a higher concentration of DPE to form DPE derivatives, which has a strong steric effect on the fragments transforming to platform chemicals. With the increasing of temperature, the enhanced pyrolysis of cellulose by ethanol radicals is more significant in comparison with the inhibition of DPE, resulting in an improvement in the content of platform chemicals.
  • 加载中
    1. [1]

      MATEUS M M, BORDADO J C, DOS SANTOS R G. Potential biofuel from liquefied cork-Higher heating value comparison[J]. Fuel, 2016,174:114-117. doi: 10.1016/j.fuel.2016.01.081

    2. [2]

      HASSANZADEH S, AMINLASHGARI N, HAKKARAINEN M. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals[J]. Carbohydr Polym, 2014,112:448-457. doi: 10.1016/j.carbpol.2014.06.011

    3. [3]

      YAMAZAKI J, MINAMI E, SAKA S. Liquefaction of beech wood in various supercritical alcohols[J]. J Wood Sci, 2006,52(6):527-532. doi: 10.1007/s10086-005-0798-4

    4. [4]

      MAZAHERI H, LEE K T, BHATIA S, MOHAMED A R. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil:Effect of solvents[J]. Bioresour Technol, 2010,101(19):7641-7647. doi: 10.1016/j.biortech.2010.04.072

    5. [5]

      ZHENG Chao-yang, XIE Xin-an, TAO Hong-xiu, ZHENG Lu-si, LI Yan. Depolymerization of stalk cellulose during its liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2012(5):526-532.  

    6. [6]

      TAO Hong-xiu, XIE Xin-an, ZHENG Chao-yang, ZHAN Xiao-qing. Liquefaction of cornstalk cellulose in sub/super-critical ethanol[J]. J Northwest Univ Agri For (Nat Sci Ed), 2014, 42(1):196-204. 

    7. [7]

      CHEN Xiao-fei. Analysis of the products from alkanolysis of the rice-stalk powder and related mechanism study[D]. Wuhan:Wuhan University of Science and Technology, 2008. 

    8. [8]

      MURNIEKS R, KAMPARS V, MALINS K, APSENIECE L. Hydrotreating of wheat straw in toluene and ethanol[J]. Bioresour Technol, 2014,163:106-111. doi: 10.1016/j.biortech.2014.04.022

    9. [9]

      TANG Shi-rong. Analysis of depolymerization product of cornstalk in supercritical ethanol[J]. J Anhui Agri Sci, 2009, 37(11):4869-4870.

    10. [10]

      ZHENG C, TAO H, XIE X. Distribution and characterizations of liquefaction of celluloses in sub-and super-critical ethanol[J]. Bioresour, 2013,8(1):648-662.  

    11. [11]

      LI Wei, XIE Xin-an, TAN Cheng-zheng, LI Yan, LI Lu, WANG Ya-li, WEI Xing, FAN Di. Effects of hydroxyl and hydrogen free radicals on the liquefaction of cellulose in sub/supercritical ethanol[J]. J Fuel Chem Technol, 2016,44(4):415-421.  

    12. [12]

      ZHAO Min-jian, SHI Yan, FU Zhi-feng. Polymerization mechanism of n-butyl acrylate in the presence of 1, 1-diphenylethylene[J]. J Bejing Univ Chem Technol (Nat Sci), 2014(3):64-68.  

    13. [13]

      MA Jin-hong, ZHAO Min-jian, SHI Yan, FU Zhi-feng. Radical polymerization of methyl methacrylate in the presence of 1, 1-diphenylethylene[J]. J Bejing Univ Chem Technol (Nat Sci), 2011(4):79-83.  

    14. [14]

      GUO Z, BAI Z, BAI J, WANG Z, LI W. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Process Technol, 2011,92(1):119-125. doi: 10.1016/j.fuproc.2010.09.014

    15. [15]

      OGIHARA Y, JR R L S, INOMATA H, ARAI K. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550-1000 kg/m3)[J]. Cellulose, 2005,12(6):595-606. doi: 10.1007/s10570-005-9008-1

    16. [16]

      TAO Hong-xiu, XIE Xin-an, TANG Cheng-zheng, TIAN Wen-guang. Mechanism of ketones formation from cellulose liquefaction in sub-and supercritical ethanol[J]. J Fuel Chem Technol, 2013,41(1):60-66.  

    17. [17]

      GUO Gui-quan, WANG Hong-juan, CHEN Fan geng. Thermochemical liquefaction of lignocellulosic materious in hydrogen-donor solvent[J]. J Cellulose Sci Technol, 2003,11(2):41-50.  

    18. [18]

      MORTENSEN P M, GRUNWALDT J, JENSEN P A, KNUDSEN K G, JENSEN A D. A review of catalytic upgrading of bio-oil to engine fuels[J]. Appl Catal A:Gen, 2011,407(1/2):1-19.  

    19. [19]

      TANG C, TAO H, ZHAN X, XIE X. Mechanism of esters formation during cellulose liquefaction in sub-and supercritical ethanol[J]. Bioresour, 2014,9(3):4946-4957.  

    20. [20]

      BAO Gui-rong. Study on cellulose degradation in high temperature and high pressure solvents[D]. Kunming:Kunming University of Science and Technology, 2010. 

    21. [21]

      LIAO Hang-tao. Mechanism of fast pyrolysis of fructose and cellubiose[D]. Beijing:North China Electric Power University, 2014. 

    22. [22]

      GENG Zhong-feng. Theoretical and experimental study on mechanism of cellulose pyrolysis[D]. Tianjin:Tianjin University, 2010. 

    23. [23]

      HUANG Jin-bao. Molecular simulation sdudy of pyrolysis mechanism of cellulose[D]. Chongqing:Chongqing University, 2010. 

    24. [24]

      SHI Ning, LIU Qi-ying, WANG Tie-jun, ZHANG Qi, LIAO Yu-he, MA Long-long, CAI Chi-liu. Progress in one-pot catalytic transformation of cellulose into valuable chemicals[J]. Advan New Renew Energy, 2014(4):245-253.  

    25. [25]

      LI W, XIE X, TANG C, LI Y, LI L, WANG Y, FAN D, WEI X. The distribution of bio-oil components with the effects of sub/supercritical ethanol and free radicals during cellulose liquefaction[J]. Bioresour, 2016,11(4):9771-9788.  

    26. [26]

      HUANG Jin-bao, LIU Chao, WEI Shun-an. A theoretical study on the mechanism of levoglucosan formation in cellulose pyrolysis[J]. J Fuel Chem Technol, 2011(8):590-594. 

    27. [27]

      HUANG Jin-bao, LIU Chao, WEI Shun-an. Thermodynamic studies of pyrolysis mechanism of cellulose monomer[J]. Asta Chimica Sinica, 2009,67(18):2081-2086. doi: 10.3321/j.issn:0567-7351.2009.18.005

  • 加载中
    1. [1]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    5. [5]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    20. [20]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

Metrics
  • PDF Downloads(2)
  • Abstract views(1698)
  • HTML views(766)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return