Citation: Wang Chun, Wang Qinglong, Dong Renfeng, Cai Yuepeng. Aggregation/Dispersion Behavior of Micro-Nanomotor and the Analysis of the Corresponding Mechanisms[J]. Chemistry, ;2018, 81(4): 291-296. shu

Aggregation/Dispersion Behavior of Micro-Nanomotor and the Analysis of the Corresponding Mechanisms

Figures(6)

  • The micro/nanomotors are nanometer or micrometer-sized devices which can be activated by chemical reactions or external physical energy sources (light energy, sound energy, electric energy, magnetic energy etc.). The activated micro/nanomotors display rotation, rolling, shuttling, delivery, contraction, or collective behavior. The device has the advantages of small volume, good controllability, simple preparation and so on, and has shown good application prospects in many fields such as self-assembly of nano-particles, degradation of polymers, drug transport and water pollution control. The aggregation and dispersion of micro-nanomotors is a very important group behavior of motor. When aggregated, the efficiency of motors can be greatly improved. In dispersed state, they can also become independent individuals, and exercise their own missions. This article will outline the important research progress and the latest research results of micro-nano motors in gathering and dispersing behavior in recent years, and give a detailed description of the conversion process and its mechanism under different stimuli, which can provide some reference for the in-depth study of micro-nano motor dynamic behavior.
  • 加载中
    1. [1]

      M S Brewer, J Novakofski, K Freise. Meat Sci., 2006, 72(4):596~602. 

    2. [2]

      K Kinbara, T Aida. Chem. Rev., 2005, 105(4):1377~1400. 

    3. [3]

      H Hess, G D Bachand, V Vogel. Chem. Eur. J., 2004, 10(9):2110~2116. 

    4. [4]

       

    5. [5]

      R K Soong, G D Bachand, H P Neves et al. Science, 2000, 290(5496):1555~1558. 

    6. [6]

      R F Ismagilov, A Schwartz, N Bowden et al. Angew. Chem., 2002, 114(4):674~676. 

    7. [7]

      W F Paxton, K C Kistler, C C Olmeda et al. J. Am. Chem. Soc., 2004, 126(41):13424~13431. 

    8. [8]

      R Laocharoensuk, J Burdick, J Wang. ACS Nano, 2008, 2(5):1069~1075. 

    9. [9]

      W Gao, A Pei, R Dong et al. J. Am. Chem. Soc., 2014, 136(6):2276~2279. 

    10. [10]

      R Dong, C Wang, Q Wang et al. Nanoscale, 2017, 9(39):15027~15032. 

    11. [11]

      F Wong, A Sen. ACS Nano, 2016, 10(7):7172~7179. 

    12. [12]

      W Gao, A Uygun, J Wang. J. Am. Chem. Soc., 2012, 134(2):897~900. 

    13. [13]

      B Dai, J Wang, Z Xiong et al. Nat. Nanotechnol., 2016, 11(12):1087~1092. 

    14. [14]

      M Xuan, Z Wu, J Shao et al. J. Am. Chem. Soc., 2016, 138(20):6492~6497. 

    15. [15]

      F Martinez-Pedrero, H Massana-Cid, P Tierno. Small, 2017, 13(18):1603449. 

    16. [16]

      T Xu, F Soto, W Gao et al. J. Am. Chem. Soc., 2015, 137(6):2163~2166. 

    17. [17]

      T Li, J Li, H Zhang et al. Small, 2016, 12(44):6098~6105. 

    18. [18]

      K E Peyer, S Tottori, F Qiu et al. Chem. Eur. J., 2013, 19(1):28~38. 

    19. [19]

      G Loget, A Kuhn. Nat. Commun., 2011, 2:535. 

    20. [20]

      J Li, Q Xiao, J-Z Jiang et al. RSC Adv., 2014, 4(52):27522~27525. 

    21. [21]

      W Gao, S Sattayasamitsathit, A Uygun et al. Nanoscale, 2012, 4(7):2447~2453. 

    22. [22]

      J Li, S Sattayasamitsathit, R Dong et al. Nanoscale, 2014, 6(16):9415~9420. 

    23. [23]

      W Gao, D Kagan, O S Pak et al. Small, 2012, 8(3):460~467. 

    24. [24]

      S Balasubramanian, D Kagan, C-M Jack Hu et al. Angew. Chem. Int. Ed., 2011, 50(18):4161~4164. 

    25. [25]

      J Wu, S Balasubramanian, D Kagan et al. Nat. Commun., 2010, 1:36. 

    26. [26]

      D Kagan, P Calvo-Marzal, S Balasubramanian et al. J. Am. Chem. Soc., 2009, 131(34):12082~12083. 

    27. [27]

      J Li, V V Singh, S Sattayasamitsathit et al. ACS Nano, 2014, 8(11):11118~11125. 

    28. [28]

      M Guix, J Orozco, M García et al. ACS Nano, 2012, 6(5):4445~4451. 

    29. [29]

       

    30. [30]

      D Kagan, S Balasubramanian, J Wang. Angew. Chem. Int. Ed., 2011, 50(2):503~506. 

    31. [31]

      W Wang, W Duan, S Ahmed et al. Nano Today, 2013, 8(5):531~554. 

    32. [32]

      W Wang, W Duan, Z Zhang et al. Chem. Commun., 2015, 51(6):1020~1023. 

    33. [33]

      M Ibele, T E Mallouk, A Sen. Angew. Chem. Int. Ed., 2009, 48(18):3308~3312. 

    34. [34]

      J Palacci, S Sacanna, A P Steinberg et al. Science, 2013, 339(6122):936~940. 

    35. [35]

      Y Hong, M Diaz, U M Córdova-Figueroa et al. Adv. Funct. Mater., 2010, 20(10):1568~1576. 

    36. [36]

      W Li, X Wu, H Qin et al. Adv. Funct. Mater., 2016, 26(18):3164~3171. 

    37. [37]

      M V Sapozhnikov, Y V Tolmachev, I S Aranson et al. Phys. Rev. Lett., 2003, 90(11):114301. 

    38. [38]

      T Vissers, A van Blaaderen, A Imhof. Phys. Rev. Lett., 2011, 106(22):228303. 

    39. [39]

      J Zhang, J Yan, S Granick. Angew. Chem. Int. Ed., 2016, 55(17):5166~5169. 

    40. [40]

      W Duan, R Liu, A Sen. J. Am. Chem. Soc., 2013, 135(4):1280~1283. 

  • 加载中
    1. [1]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    2. [2]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    3. [3]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    4. [4]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    5. [5]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    6. [6]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    7. [7]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    18. [18]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    19. [19]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    20. [20]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

Metrics
  • PDF Downloads(30)
  • Abstract views(4253)
  • HTML views(1612)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return