Citation: Dong Shizhi, Wang Enjie, Ma Zhuang. Study on Synthesis and Capacitive Deionization Performance of a Novel Binder-Free Electrodes[J]. Chemistry, ;2018, 81(12): 1143-1146. shu

Study on Synthesis and Capacitive Deionization Performance of a Novel Binder-Free Electrodes

  • Corresponding author: Ma Zhuang, mazh123@263.net
  • Received Date: 20 March 2018
    Accepted Date: 31 August 2018

Figures(6)

  • In this work a novel binder-free electrode material is prepared through carbon dioxide activation by using basswood as a precursor, and it is also used as current collector. The morphology, structure, and pore properties are revealed by a variety of characterization methods, such as SEM, X-ray diffraction, Raman spectroscopy, nitrogen adsorption-desorption measurement. The capacitive desalination performance of the material was tested by capacitive desalination device. The results showed that the material has a large number of microporous structure with a specific surface area of 1440m2/g. At the solution solubility of 200, 500, 1000 and 2000 mg/L, the adsorption capacities were 2.02, 3.76, 6.21 and 12.42 mg/g, respectively.
  • 加载中
    1. [1]

      L Jiao. Science, 2010, 328(5985):1462~1463. 

    2. [2]

      M A Shannon, P W Bohn, M Elimelech et al. Nature, 2008, 452(7185):301~310. 

    3. [3]

      M Elimelech, W A Phillip. Science, 2011, 333(6043):712~717. 

    4. [4]

      A Lee, J WElam, S B Darling. Environ. Sci. Water Res. Technol., 2016, 2(1):17~42. 

    5. [5]

      V L Professor, B Bladergroen. Filtr. Separat., 2001, 38(7):32~36. 

    6. [6]

      A Alkhudhiri, N Darwish, N Hilal. Desalination, 2012, 287(8):55~60.

    7. [7]

      L M Camacho, L Dumée, J Zhang et al. Water, 2013, 5(1):94~196. 

    8. [8]

      Y Zhang, Y Peng, S Ji et al. Desalination, 2015, 367:223~239. 

    9. [9]

      Y Ghalavand, M S Hatamipour. A Rahimi. Desalin. Water Treat., 2015, 54(6):1526~1541.

    10. [10]

      J R Ziolkowska. Water Resour. Manag., 2015, 29(5):1385~1397. 

    11. [11]

      Y Zhao, Y Wang, R Wang et al. Desalination, 2013, 324(35):127~133. 

    12. [12]

      F A Almarzooqi, A A A Ghaferi, I Saadat et al. Desalination, 2014, 342(5):3~15. 

    13. [13]

      A Subramani, J G Jacangelo. Water Res., 2015, 75:164~187. 

    14. [14]

      Y Oren. Desalination, 2008, 228(1):10~29. 

    15. [15]

      K Y Foo, B H Hameed. J. Hazard. Mater., 2009, 170(2~3):552~559. 

    16. [16]

      M A Anderson, A L Cudero, J Palma. Electrochim. Acta, 2010, 55(12):3845~3856. 

    17. [17]

      Y Liu, C Nie, Pan L et al. Inorg. Chem. Front., 2014, 1(3):249~255. 

    18. [18]

       

    19. [19]

      Z H Huang, Z Yang, F Kang et al. J. Mater. Chem. A, 2016, 5(2):470~496.

    20. [20]

      P Liu, T Yan, L Shi et al. J. Mater. Chem. A, 2017, 5(27):13907~13943. 

    21. [21]

      S Porada, R Zhao, A Wal et al. Prog. Mater. Sci., 2013, 58(8):1388~1442. 

    22. [22]

      C Luo, H Zhu, W Luo, et al. ACS Appl. Mater. Interf., 2017, 9(17):14801~14807. 

    23. [23]

       

    24. [24]

      K S W Sing. Pure Appl. Chem., 1985, 57(4):603~619. 

    25. [25]

      L Han, K G Karthikeyan, M A Anderson et al. J. Colloid Interf. Sci., 2014, 430:93~99. 

    26. [26]

      J Kim, D H Peck, B Lee et al. New Carbon Mater., 2016, 31(4):378~385. 

    27. [27]

       

  • 加载中
    1. [1]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    13. [13]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    18. [18]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    20. [20]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

Metrics
  • PDF Downloads(5)
  • Abstract views(169)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return