Citation: XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-ying. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1409-1420. shu

Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents

  • Corresponding author: ZHAO Yong-chun, yczhao@mail.hust.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 3 November 2020

    Fund Project: the Research Foundation of Educational Department of Hunan Province, China 19C0084The project was supported by the Nationcd Natural Science Foundation of China (42030807) the Natural Science Foundation of Hunan Province, China (2020JJ5590), the Research Foundation of Educational Department of Hunan Province, China (19C0084) and the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (2019ZNDL004)the Nationcd Natural Science Foundation of China 42030807the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province 2019ZNDL004the Natural Science Foundation of Hunan Province, China 2020JJ5590

Figures(9)

  • Mercury emitted from coal-fired power plants seriously harms human health and the ecological environment. In this paper, the effect of pollutant control devices on the removal of mercury from the flue gas in the ultra-low emission coal-fired power plants were first summarized; in particular, the impact of denitration, dedusting, and desulfuration devices after the ultra-low emission retrofits on the mercury removal was highlighted. Subsequently, the research progress on the non-carbon-based adsorbents used in the flue gas cleaning, including fly ash, natural minerals, noble metals, metal oxides, and metal sulfides, was then reviewed; the factors that may influence their performance in mercury adsorption were evaluated. Lastly, based on the current research progress, it is proposed that special attention should be paid in the future to the stability and leaching toxicity of adsorbed mercury as well as the regeneration and recycling of the spent adsorbents.
  • 加载中
    1. [1]

      UN Environment. Global mercury assessment 2018[R]. Switzerland: UN environment programme chemicals and health branch Geneva, 2019.

    2. [2]

      DUAN Yu-feng, ZHU Chun, SHE Min, YAO Ting, ZHAO Shi-lin, TANG Hong-jian, HUANG Tian-fang, LIU Meng. Research progress on mercury emission and control technologies in coal-fired power plants[J]. Clean Coal Technol, 2019,25(2):1-17.

    3. [3]

      PAVLISH J H, SONDREAL E A, MANN M D, OLSON E S, GALBREATH K C, LAUDAL D L, BENSON S A. Status review of mercury control options for coal-fired power plants[J]. Fuel Process Technol, 2003,82(2/3):89-165.

    4. [4]

      ZhOU Qiang, DUAN Yu-feng, HPNG Ya-guang, ZHU Chun, SHE Min, WEI Hong-qi. Experimental study on mercury removal by activated carbon injection and predictive model[J]. J Southeast Univ (Nat Sci Ed), 2013,43(6):1258-1263.

    5. [5]

      PRESTO A A, GRANITE E J. Impact of sulfur oxides on mercury capture by activated carbon[J]. Environ Sci Technol, 2007,41:6679-6584.

    6. [6]

      THOMAS J. FEELEY, JONES A P. An update on DOE/NETL's mercury control technology field testing program[R]. US: Department of Energy, National Energy Technology Laboratory, 2008.

    7. [7]

      TANG L, LI C, ZHAO L, GAO L, DU X, ZENG J, ZHANG J, ZENG G. A novel catalyst CuO-ZrO2 doped on Cl- activated bio-char for Hg0 removal in a broad temperature range[J]. Fuel, 2018,218:366-374.

    8. [8]

      GÓMEZ-GIMÉNEZ C, BALLESTERO D, JUAN R, RUBIO B, IZQUIERDO M T. Mercury capture by a regenerable sorbent under oxycoal combustion conditions: Effect of SO2 and O2 on capture efficiency[J]. Chem Eng Sci, 2015,122:232-239.

    9. [9]

      CHEN Kun-yang, GUO Ting-ting, WANG Hai-gang, HU Dong. Potential analysis of synergetic mercury removal from coal-fired flue gas on purification equipment after retrofitting of ultra-low emission[J]. Electr Power, 2018,51(6):160-165.

    10. [10]

      YU Jing, HOU Bo, HUANG Qi-shun, MA Da-wei, CHEN Qian, CHENG Jing. Study on form distribution and emission of mercury from ultra-low emission coal-fired power plants[J]. Huadian Technol, 2020,42(9):69-75.

    11. [11]

      YU Li-xin, LI Chao, HAN Zhong-guo, LIU Jian-min, JIANG Li-xing. Mercury emission characteristics from coal-fired power plants based on field tests[J]. Environ Eng, 2015,8:136-139.

    12. [12]

      ZHAO S, DUAN Y, YAO T, LIU M, LU J, TAN H, WANG X, WU L. Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant[J]. Fuel, 2017,199:653-661.

    13. [13]

      ZHOU Z J, LIU X W, ZHAO B, CHEN Z G, SHAO H Z, WANG L L, XU M H. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Process Technol, 2015,131:99-108.

    14. [14]

      YANG Li-guo. Transformation and removal mechanism of mercury from coal flue gas[D]. Nanjing: Southeast University, 2008.

    15. [15]

      LI Yong-sheng, XU Yue-yang, XUE Jian-ming. Study on mercury synergistic effect by SCR catalyst of a 630 MW coal-fired ultra-low emission power unit[J]. J Chin Soc of Power Eng, 2018,38(11):914-918.

    16. [16]

      SVACHULA J, ALEMANY L J, FERLAZZO N, FORZATTI P, TRONCONI E, BREGANI F. Oxidation of SO2 to SO3 over honeycomb DeNoxing catalysts[J]. Ind Eng Chem Res, 1993,32(5):826-834.

    17. [17]

      ZHUANG Y, LAUMB J, LIGGETT R, HOLMES M, PAVLISH J. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Process Technol, 2007,88(10):929-934.

    18. [18]

      ZHENG C, WANG L, ZHANG Y, WENG W, ZHAO H, ZHOU J, GAO X. Co-benefit of hazardous trace elements capture in dust removal devices of ultra-low emission coal-fired power plants[J]. J Zhejiang Univ Sci A: Appl Phys Eng, 2018,19(1):68-79.

    19. [19]

      ZHAO Y, HAN Li-peng. Synergistic removal of mercury by low-low temperature ESP for ultra-low emission coal-fired power plants[J]. J Chin Soc Power Eng, 2019,39(4):319-323+330.

    20. [20]

      ZHANG Y, YANG J, YU X, SUN P, ZHAO Y, ZHANG J, CHEN G, YAO H, ZHENG C. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices[J]. Fuel Process Technol, 2017,158:272-280.

    21. [21]

      REYNOLDS J. Multi-pollutant control using membrane-based up-flow wet electrostatic precipitation[R]. US: Office of scientific & technical information, 2004.

    22. [22]

      ZHOU Shen-xue. The research of wesp mercury removal characteristics in ule system[J]. Environ Eng, 2017,35:174-145.

    23. [23]

      CHEN Yao-ji, MENG Wei, HU Da-qing. Mercury emission characteristic and removal technical analysis in coal-fired power plant[J]. Energy res manage, 2016,1:25-27+44.

    24. [24]

      CUI Li-ming, HUANG Zhi-jie, MO Hua, ZHU Jie, JIANG An, HUANG Ru. Test and study on synergic mercury removal performance of environmental protection facilities at ultra-low pollutants emission[J]. Electr Power, 2017,50(10):136-139+143.

    25. [25]

      LI Shao-hua, XU Ying-jian, WANG Hu, BAI Zhang. Simulation study on the take off mercury and sulfur performance in the wet flue gas desulfurization system[J]. Boiler Technol, 2014,45(6):72-76.

    26. [26]

      ZHAO Y, ZHANG J, LIU J, DÍAZ-SOMOANO M, ABAD-VALLE P, MARTÍNEZ-TARAZONA M R, ZHENG C. Experimental study on fly ash capture mercury in flue gas[J]. Sci China Technol Sci, 2010,53(4):976-983.

    27. [27]

      LÓPEZ-ANTÓN M A, ABAD-VALLE P, DÍAZ-SOMOANO M, SUÁREZ-RUIZ I, MARTÍNEZ-TARAZONA M R. The influence of carbon particle type in fly ashes on mercury adsorption[J]. Fuel, 2009,88(7):1194-1200.

    28. [28]

      ABAD-VALLE P, LOPEZ-ANTON M A, DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R. The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J]. Chem Eng J, 2011,174(1):86-92.

    29. [29]

      CAI J, SHEN B, LI Z, CHEN J, HE C. Removal of elemental mercury by clays impregnated with KI and KBr[J]. Chem Eng J, 2014,241:19-27.

    30. [30]

      LI M, WANG L, CHEN J Y, JIANG Y L, WANG W J. Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal[J]. J Fuel Chem Technol, 2014,42(10):1266-1272.

    31. [31]

      LEE J Y, JU Y, KEENER T C, VARMA R S. Development of cost-effective noncarbon sorbents for Hg0 removal from coal-fired power plants[J]. Environ Sci Technol, 2006,40(8):2714-2720.

    32. [32]

      HRDLICKA J A, SEAMES W S, MANN M D, MUGGLI D S, HORABIK C A. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environ Sci Technol, 2008,42(17):6677-6682.

    33. [33]

      ZHAO Y, MANN M D, PAVLISH J H, MIBECK B A F, DUNHAM G E, OLSON E S. Application of gold catalyst for mercury oxidation by chlorine[J]. Environ Sci Technol, 2006,40(5):1603-1608.

    34. [34]

      WU S, OZAKI M, UDDIN M, SASAOKA E. Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: Effect of hydrogen chloride[J]. Fuel, 2008,87(4/5):467-474.

    35. [35]

      QIAO S, CHEN J, LI J, QU Z, LIU P, YAN N, JIA J. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina[J]. Ind Eng Chem Res, 2009,48(7):3317-3322.

    36. [36]

      WEN X, LI C, FAN X, GAO H, ZHANG W, CHEN L, ZENG G, ZHAO Y. Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3[J]. Energy Fuels, 2011,25(7):2939-2944.

    37. [37]

      LIU W, XU H, LIAO Y, QUAN Z, LI S, ZHAO S, QU Z, YAN N. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas[J]. Fuel, 2019,235:847-854.

    38. [38]

      LI H, ZHU L, WANG J, LI L, SHIH K. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J]. Environ Sci Technol, 2016,50(17):9551-9557.

    39. [39]

      MEI J, WANG C, KONG L, LIU X, HU Q, ZHAO H, YANG S. Outstanding performance of recyclable amorphous MoS3 supported on TiO2 for capturing high concentrations of gaseous elemental mercury: Mechanism, kinetics, and application[J]. Environ Sci Technol, 2019,53(8):4480-4489.

    40. [40]

      LIU H, YOU Z, YANG S, LIU C, XIE X, XIANG K, WANG X, YAN X. High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide[J]. Environ Sci Pollut Res, 2019,26(7):6735-6744.

    41. [41]

      ZHAO Y, ZHANG J, LIU J, DIAZ-SOMOANO M, ABAD-VALLE P, MARTINEZ-TARAZONA M, ZHENG C. Experimental study on fly ash capture mercury in flue gas[J]. Sci China Technol Sci, 2010,53(4):976-983.

    42. [42]

      WANG F, WANG S, MENG Y, ZHANG L, WU Q, HAO J. Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion[J]. Fuel, 2016,163:232-239.

    43. [43]

      ABAD-VALLE P, LOPEZ-ANTON M A, DIAZ-SOMOANO M, JUAN R, RUBIO B, GARCIA J R, KHAINAKOV S A, MARTÍNEZ-TARAZONA M R. Influence of iron species present in fly ashes on mercury retention and oxidation[J]. Fuel, 2011,90(8):2808-2811.

    44. [44]

      YANG J, ZHAO Y, ZHANG S, LIU H, CHANG L, MA S, ZHANG J, ZHENG C. Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF[J]. Fuel Process Technol, 2017,167:263-270.

    45. [45]

      ZHANG Y, DUAN W, LIU Z, CAO Y. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor[J]. Fuel, 2014,128:274-280.

    46. [46]

      GU Y, ZHANG Y, LIN L, XU H, ORNDORFF W, PAN W P. Evaluation of elemental mercury adsorption by fly ash modified with ammonium bromide[J]. J Therm Anal Calorim, 2015,119(3):1663-1672.

    47. [47]

      WANG S, ZHANG Y, GU Y, WANG J, LIU Z, ZHANG Y, CAO Y, ROMERO C E, PAN W P. Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J]. Fuel, 2016,181:1230-1237.

    48. [48]

      LIU Fang-fang, ZHANG Jun-ying, ZHAO Yong-chun, ZHENG Chu-guang. Mercury removal from flue gas by metal oxide-loaded attapulgite mineral sorbent[J]. J Combust Sci Technol, 2014,20(6):553-557.

    49. [49]

      SHI D, LU Y, TANG Z, HAN F, CHEN R, XU Q. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite[J]. Korean J Chem Eng, 2014,31(8):1405-1412.

    50. [50]

      SHI Dong-lei, QIAO Ren-jing, XU Qi. Preparation of acid modified attapulgite and its performance of mercury removal[J]. Chin J Synth Chem, 2015,23(8):720-724.

    51. [51]

      LIU H, YANG J, TIAN C, ZHAO Y, ZHANG J. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. App Clay Sci, 2017,147:36-43.

    52. [52]

      DING Feng, ZHANG Jun-ying, ZHAO Yong-chun, ZHENG Chu-guang. Removal of mercury vapor with sulfur-impregnated silicate sorbents[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 2011,39(11):116-119.

    53. [53]

      HE C, SHEN B, CHEN J. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs[J]. Environ Sci Technol, 2014,48(14):7891-7898.

    54. [54]

      HE Chuan, SHEN Bo-xiong, CAI Ji, CHEN Jian-hong, LI Zhuo. Removal of elemental mercury from flue gas by Ce-Mn modified Titania-pillared clays[J]. J Eng Thermophys, 2014,35(10):2088-2092.

    55. [55]

      HRDLICKA J A, SEAMES W S, MANN M D. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environ Sci Technol, 2008,42(17):6677-6682.

    56. [56]

      MERCEDES DIAZ-SOMOANO, M. ROSA MARTINEZ-TARAZONA J R-P, ROBERTO GARCIA, LOPEZ-ANTON M A. Development of gold nanoparticle-doped activated carbon sorbent for elemental mercury[J]. Energy Fuels, 2011,25(5):2022-2027.

    57. [57]

      IZQUIERDO M T, BALLESTERO D, JUAN R, GARCIA-DIEZ E, RUBIO B, RUIZ C, PINO M R. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents[J]. J Hazard Mater, 2011,193:304-310.

    58. [58]

      XIE Y, YAN B, TIAN C, LIU Y, LIU Q, ZENG H. Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents[J]. J Mater Chem A, 2014,2(42):17730-17734.

    59. [59]

      LUO G, YAO H, XU M, CUI X, CHEN W, GUPTA R, XU Z. Carbon nanotube-silver composite for mercury capture and analysis[J]. Energy Fuels, 2010,24(1):419-426.

    60. [60]

      YANG S, GUO Y, YAN N, WU D, HE H, XIE J, QU Z, JIA J. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B: Environ, 2011,101(3/4):698-708.

    61. [61]

      YANG S, GUO Y, YAN N, WU D, HE H, QU Z, JIA J. Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: effect of chemical heterogeneity[J]. Ind Eng Chem Res, 2011,50(16):9650-9656.

    62. [62]

      XIONG S, XIAO X, HUANG N, DANG H, LIAO Y, ZOU S, YANG S. Elemental mercury oxidation over Fe-Ti-Mn spinel: performance, mechanism, and reaction kinetics[J]. Environ Sci Technol, 2017,51(1):531-539.

    63. [63]

      LI Yang, LIU Bing, YANG He, YANG Da-wei, HU Hao-quan. Removal of elemental mercury (Hg0) from simulated flue gas over MnOx-TiO2 sorbents[J]. J Fuel Chem Technol, 2020,48(5):513-524.

    64. [64]

      CIMINO S, SCALA F. Removal of elemental mercury by MnOx catalysts supported on TiO2 or Al2O3[J]. Ind Eng Chem Res, 2015,55(18):5133-5138.

    65. [65]

      QIAO S, CHEN J, LI J, QU Z, LIU P, YAN N, JIA J. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/Alumina[J]. Ind Eng Chem Res, 2009,48:3317-3322.

    66. [66]

      LI Y, CHENG H, LI D, QIN Y, XIE Y, WANG S. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust[J]. Chem Commun, 2008,12:1470-1472.

    67. [67]

      WAN Q, DUAN L, HE K, LI J. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J, 2011,170(2/3):512-517.

    68. [68]

      HUA X Y, ZHOU J S, LI Q, LUO Z Y, CEN K F. Gas-phase elemental mercury removal by CeO2 impregnated activated coke[J]. Energy Fuels, 2010,24(10):5426-5431.

    69. [69]

      MANCEAU A, MERKULOVA M, MURDZEK M, BATANOVA V, BARAN R, GLATZEL P, SAIKIA B K, PAKTUNC D, LEFTICARIU L. Chemical forms of mercury in pyrite: Implications for predicting mercury releases in acid mine drainage settings[J]. Environ Sci Technol, 2018,52(18):10286-10296.

    70. [70]

      SUN R, ZHU H, SHI M, LUO G, XU Y, LI X, YAO H. Preparation of fly ash adsorbents utilizing non-thermal plasma to add S active sites for Hg0 removal from flue gas[J]. Fuel, 2020,266116936.

    71. [71]

      ZHAO H, MU X, YANG G, GEORGE M, CAO P, FANADY B, RONG S, GAO X, WU T. Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants[J]. Appl Energy, 2017,207:254-264.

    72. [72]

      KONG L, ZOU S, MEI J, GENG Y, ZHAO H, YANG S. Outstanding resistance of H2S-modified Cu/TiO2 to SO2 for capturing gaseous Hg(0) from nonferrous metal smelting flue gas: Performance and reaction mechanism[J]. Environ Sci Technol, 2018,52(17):10003-10010.

    73. [73]

      LIAO Y, XU H, LIU W, NI H, ZHANG X, ZHAI A, QUAN Z, QU Z, YAN N. One step interface activation of ZnS using cupric ions for mercury recovery from nonferrous smelting flue gas[J]. Environ Sci Technol, 2019,53(8):4511-4518.

    74. [74]

      YANG Z, LI H, FENG S, LI P, LIAO C, LIU X, ZHAO J, YANG J, LEE P H, SHIH K. Multiform sulfur adsorption centers and copper-terminated active sites of nano-CuS for efficient elemental mercury capture from coal combustion flue gas[J]. Langmuir, 2018,34(30):8739-8749.

    75. [75]

      YANG Zhe-qun, SHI Kai-min, LI Hai-long, YANG Jian-ping, ZHAO Jie-xia, FENG Shi-hao. An experimental and mechanistic study on the elemental mercury removal over nano-sized copper sulfide[J]. J Eng Thermophys, 2019,40(12):2946-2950.

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    4. [4]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    7. [7]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(1)
  • Abstract views(1163)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return