Citation: YOU Hong-xin, ZHAO Cong, QU Bin, LIU Run-jie, GUAN Guo-qing, XU Li-jun, ABULITI. Fabrication of Ni0.5Cu0.5Ba0.05Ox coated SDC stereoscopic anode by hard template method for solid oxide fuel cells[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1272-1280. shu

Fabrication of Ni0.5Cu0.5Ba0.05Ox coated SDC stereoscopic anode by hard template method for solid oxide fuel cells

  • Corresponding author: YOU Hong-xin, youhx@sina.com
  • Received Date: 27 April 2016
    Revised Date: 30 June 2016

Figures(10)

  • The fabrication of porous and stereoscopic anode is crucial for the effective use of dry methane as fuel in solid oxide fuel cells (SOFCs). In this work, tubular SDC coated with Ni0.5Cu0.5Ba0.05Ox (Ni0.5Cu0.5Ba0.05Ox/SDC) was prepared by hard template method combined with wet impregnation method. For comparison, Ni0.5Cu0.5Ba0.05Ox powder was also prepared by sol-gel method and then mixed with SDC to get anode Ni0.5Cu0.5Ba0.05Ox-SDC. Corresponding electrolyte-supported unit cells Ni0.5Cu0.5Ba0.05Ox/SDC|YSZ|LSM-YSZ and Ni0.5Cu0.5Ba0.05Ox-SDC|YSZ|LSM-YSZ were then fabricated for the power generation performance and long-term stability test. Fueled with dry methane at 800℃ on a fuel cell with Ni0.5Cu0.5Ba0.05Ox-SDC as anode, the maximum power density is only 324.99 mW/cm2 and the voltage drops 5.60% after 10 h operation; however, with Ni0.5Cu0.5Ba0.05Ox/SDC as the anode, the maximum power density reaches 384.54 mW/cm2 and no degradation in voltage is observed for 100 h. As reveled by SEM, the narrow pores in Ni0.5Cu0.5Ba0.05Ox-SDC anode are prone to block by carbon deposition; in contrast, Ni0.5Cu0.5Ba0.05Ox/SDC has a three-dimensional porous structure for the diffusion of fuel and reactant gas. The surface of SDC fiber tube is coated by the catalyst particles, which can improve the three phase boundary and enhance the cell stability.
  • 加载中
    1. [1]

      PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000,404(6775):265-267. doi: 10.1038/35005040

    2. [2]

      GROSS M D, VOHS J M, GORTE R J. Recent progress in SOFC anodes for direct utilization of hydrocarbons[J]. J Mater Chem, 2007,17(30):3071-3077. doi: 10.1039/b702633a

    3. [3]

      GUERET C, DAROUX M, BILLAUD F. Methane pyrolysis:Thermodynamics[J]. Chem Eng Sci, 1997,52(5):815-827. doi: 10.1016/S0009-2509(96)00444-7

    4. [4]

      MOGENSEN M, KAMMER K. Conversion of hydrocarbons in solid oxide fuel cells[J]. Cheminform, 2003,33(1):321-331.

    5. [5]

      YOON J S, YI E J, CHOI B H, JI M J, HWANG J H. Methane oxidation behavior over La0.08Sr0.92Fe0.20Ti0.80O3-δ perovskite oxide for SOFC anode[J]. Ceram Int, 2014,40(1):1525-1529. doi: 10.1016/j.ceramint.2013.07.038

    6. [6]

      ASAMOTO M, MIYAKE S, SUGIHARA K, YAHIRO H. Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane-solid oxide fuel cells[J]. Electrochem Commun, 2009,11(7):1508-1511. doi: 10.1016/j.elecom.2009.05.042

    7. [7]

      JUN J H, LIM T H, NAM S W, HONGB S A, YOON K J. Mechanism of partial oxidation of methane over a nickel-calcium hydroxyapatite catalyst[J]. Appl Catal A:Gen, 2006,312:27-34. doi: 10.1016/j.apcata.2006.06.020

    8. [8]

      LIU L, KIM G Y, HILLIER A C, CHANDRAA A. Microstructural and electrochemical impedance study of nickel-Ce0.9Gd0.1O1.95 anodes for solid oxide fuel cells fabricated by ultrasonic spray pyrolysis[J]. J Power Sources, 2011,196(6):3026-3032. doi: 10.1016/j.jpowsour.2010.11.117

    9. [9]

      NIKOLLA E, SCHWANK J, LINIC S. Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts:The impact of the formation of Ni alloy on chemistry[J]. J Catal, 2009,263(2):220-227. doi: 10.1016/j.jcat.2009.02.006

    10. [10]

      LEE S I, VOHS J M, GORTE R J. A Study of SOFC Anodes Based on Cu-Ni and Cu-Co Bimetallics in CeO2 YSZ[J]. J Electrochem Soc, 2004,151(9):A1319-A1323. doi: 10.1149/1.1774184

    11. [11]

      GRGICAK C M, PAKULSKAM M, O'BRIENJ S, GIORGI J B. Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S[J]. J Power Sources, 2008,183(1):26-33. doi: 10.1016/j.jpowsour.2008.05.002

    12. [12]

      KAN H, LEE H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistancefor an intermediate temperature SOFC[J]. Appl Catal B:Environ, 2010,97(1):108-114.

    13. [13]

      YORK A P E, XIAO T C, GREEN M L H, CLARIDGE J B. Methane oxyforming for synthesis gas production[J]. Catal Rev, 2007,49(4):511-560. doi: 10.1080/01614940701583315

    14. [14]

      RISMANCHIAN A, MIRZABABAEI J, CHUANG S S C. Electroless plated Cu-Ni anode catalyst for natural gas solid oxide fuel cells[J]. Catal Today, 2015,245:79-85. doi: 10.1016/j.cattod.2014.05.012

    15. [15]

      ROSA D L, SIN A, FARO M L, MONFORTEA G, ANTONUCCIA V, ARICÒA A S. Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium[J]. J Power Sources, 2009,193(1):160-164. doi: 10.1016/j.jpowsour.2009.01.096

    16. [16]

      SIN A, KOPNIN E, DUBITSKY Y, ZAOPO A, ARICÒB A S, ROSA D L, GULLOB L R, ANTONUCCIB V. Performance and life-time behaviour of NiCu-CGO anodes for the direct electro-oxidation of methane in IT-SOFCs[J]. J Power Sources, 2007,164(1):300-305. doi: 10.1016/j.jpowsour.2006.10.078

    17. [17]

      SUMI H, YAMAGUCHI T, SUZUKI T, SHIMADA H, HAMAMOTO K, FUJISHIRO Y. Effects of anode microstructures on durability of microtubular solid oxide fuel cells during internal steam reforming of methane[J]. Electrochem Commun, 2014,49:34-37. doi: 10.1016/j.elecom.2014.10.006

    18. [18]

      HASLAM J J, PHAM A Q, CHUNG B W, DICARLO J F, GLASS R S. Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell[J]. J Am Ceram Soc, 2005,88(3):513-518. doi: 10.1111/jace.2005.88.issue-3

    19. [19]

      NIE L F, LIU J C, ZHANG Y J, LIU M L. Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells[J]. J Power Sources, 2011,196(23):9975-9979. doi: 10.1016/j.jpowsour.2011.08.036

    20. [20]

      PAN W P, LV Z, CHEN K F, HUANG X Q, WEI B, LI W Y, WANG Z H, SUA W H. Novel polymer fibers prepared by electrospinning for use as the pore-former for the anode of solid oxide fuel cell[J]. Electrochim Acta, 2010,55(20):5538-5544. doi: 10.1016/j.electacta.2010.04.037

    21. [21]

      SRIVASTAVA P K, QUACH T, DUAN Y Y, DONELSON R, JIANG S P, CIACCHI F T, BADWAL S. Electrode supported solid oxide fuel cells:Electrolyte films prepared by DC magnetron sputtering[J]. Solid State Ionics, 1997,99(3):311-319.

    22. [22]

      SARIKAYA A, PETROVSKY V, DOGAN F. Effect of the anode microstructure on the enhanced performance of solid oxide fuel cells[J]. Int J Hydrogen Energy, 2012,37(15):11370-11377. doi: 10.1016/j.ijhydene.2012.05.007

    23. [23]

      WANG F H, GUO R S, WEI Q T, ZHOU Y, LI H L, LI S L. Preparation and properties of Ni/YSZ anode by coating precipitation method[J]. Mater Lett, 2004,58(24):3079-3083. doi: 10.1016/j.matlet.2004.05.047

    24. [24]

      YOU H X, ZHAO C, QU B, GUAN G Q, ABUDULA A. Fabrication of Ni0.5Cu0.5Ox coated YSZ anode by hard template method for solid oxide fuel cells[J]. J Alloys Compd, 2016,669:46-54. doi: 10.1016/j.jallcom.2016.01.238

    25. [25]

      FARO M L, FRONTERA P, ANTONUCCI P L, ARICÒA A S. Ni-Cu based catalysts prepared by two different methods and their catalytic activity toward the ATR of methane[J]. Chem Eng Res Des, 2015,93:269-277. doi: 10.1016/j.cherd.2014.05.014

    26. [26]

      LI X B, SHAO G Q, LUO J M, LU J S, XUE M S, HOU Y H, DENG L P. Fabrication and characterization of GDC electrolyte/electrode integral SOFC with BaO/Ni-GDC anode[J]. Mater Res Bull, 2014,50:337-340. doi: 10.1016/j.materresbull.2013.11.034

  • 加载中
    1. [1]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    2. [2]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    3. [3]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    4. [4]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    7. [7]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    8. [8]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    9. [9]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    14. [14]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    17. [17]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    20. [20]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

Metrics
  • PDF Downloads(1)
  • Abstract views(1181)
  • HTML views(633)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return