Citation: JIA Yu-jie, JIANG Jian-chun, SUN Kang, CHEN Chao. Oxidation of formic acid over palladium catalyst supported on activated carbon derived from polyaniline and modified lignosulfonate composite[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 100-105. shu

Oxidation of formic acid over palladium catalyst supported on activated carbon derived from polyaniline and modified lignosulfonate composite

  • Corresponding author: JIANG Jian-chun, bio_energe@126.com
  • Received Date: 9 September 2016
    Revised Date: 25 October 2016

    Fund Project: projects in Forestry Public Benefit Research Sector 201404610

Figures(10)

  • Activated carbons (AC) were obtained through carbonization of polyaniline and modified lignosulfonate composite (PAn-MLS) under different temperatures; they are characterized by fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, nitrogen sorption and scanning electron microscope (SEM). With these carbon materials as the support, a series of Pd-AC catalysts for the oxidation of formic acid were prepared by liquid phase reduction and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and electrochemical analysis. The results show that with the activated carbon prepared at 800℃ (AC800) as the support, the Pd-AC800 catalyst obtained performs best in the oxidation of formic acid; the palladium particles have an average size of 5.4 nm and the electro-active surface area reaches 53.78 m2/g. As the oxidation of formic acid over Pd-AC800 is realized through direct pathway rather than CO pathway, Pd-AC800 may be considered as a potential electrode material in direct formic acid fuel cells (DFAFC).
  • 加载中
    1. [1]

      REIS A, MERT S. Performance assessment of a direct formic acid fuel cell system through exergy analysis[J]. Int J Hydrogen Energ, 2015,40:12776-12783. doi: 10.1016/j.ijhydene.2015.07.131

    2. [2]

      LIU Bo, HE Zhi-jia, JIN Hao. Wind power status and development trends[J]. J Northeast Dianli Univ, 2016,36(2):7-13.  

    3. [3]

      HU Peng-fei, LI Yong. Solar-geothermal hybrid cycle of Organic Rankine Cycle (ORC) analysis in power generation[J]. J Northeast Dianli Univ, 2015,35(5):41-45.  

    4. [4]

      REIS A, MERT S. Performance assessment of a direct formic acid fuel cell system through exergy analysis[J]. Int J Hydrogen Energy, 2015,40(1):12776-12783.  

    5. [5]

      JIA Ruo-kun, LI Yi-hua. Preparation and catalytic properties of Fe3O4-Au functional nanocomposites[J]. J Northeast Dianli Univ, 2016,36(3):75-79.

    6. [6]

      BAHARI A, HEKMATARA H, SEPAHVAND R, ADELI M. Carbon nanotube-graft-poly (citric acid) containing silver and palladium nanoparticles[J]. Nano, 2009,4(4):217-223. doi: 10.1142/S179329200900168X

    7. [7]

      LESIAK B, MAZURKIEWICZ M, MALOLEPSZY A, STOBINSKI L, MIERZWA B, MIKOLAJCZUK-ZYCHORA A, JUCHNIEWICZ K, BORODZINSKI A, ZEMEK J, JIRICEK P. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell[J]. Appl Surf Sci, 2016,387(1):929-937.  

    8. [8]

      ZHANG Ying-jie, LV Li-jie, SHI Chang-dong. Study progress in porous silicon/carbon composite electrode materials of electric adsorption[J]. J Northeast Dianli Univ, 2015,35(5):17-22.  

    9. [9]

      GHARIBI H, GOLMOHAMMADI F, KHEIMAND M. Palladium/cobalt coated on multi-walled carbon nanotubes as an electro-catalyst for oxygen reduction reaction in passive direct methanol fuel cells[J]. Fuel Cells, 2013,13(1):987-1004.  

    10. [10]

      SAWANGPHRUK M, KRITTAYAVATHANANON A, CHINWIPAS N, SRIMUK P, VATANATHAM T, LIMTRAKUL S, FOORD J. Ultraporous palladium supported on graphene-coated carbon fiber paper as a highly active catalyst electrode for the oxidation of methanol[J]. Fuel Cells, 2013,13(1):881-888.  

    11. [11]

      WANG L, ZHANG Y, LOU Y, GUO Y, LU G, GUO Y. Pd catalyst supported on activated carbon honeycomb monolith for CO oxidation and the application in air purification of vehicular tunnel[J]. Fuel Process Technol, 2014,122(1):23-29.  

    12. [12]

      CHEN T, LI D, JIANG H, XIONG C. High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds[J]. Chem Eng J, 2015,259(1):161-169.  

    13. [13]

      NSIB M F, SAAFI S, RAYES A, MOURSSA N, HOUAS A. Enhanced photocatalytic performance of Ni-ZnO/polyaniline composite for the visible-light driven hydrogen generation[J]. J Energy Inst, 2016,89(4):694-703. doi: 10.1016/j.joei.2015.05.001

    14. [14]

      TAKPIRE S R, WAGHULEY S A. Investigating the optical and structural properties of PANi/Ti polymer composites for photovoltaic application[J]. J Energy Inst, 2017,90(1):44-50. doi: 10.1016/j.joei.2015.11.001

    15. [15]

      YUAN D, ZHOU T, ZHOU S, ZOU W, MO S, XIA N. Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties[J]. Electrochem Commun, 2011,13(3):242-246. doi: 10.1016/j.elecom.2010.12.023

    16. [16]

      JIA Y, JIANG J, SUN K. Pyrolysis of polyaniline-poly (styrene sulfonate) hydrogels to prepare activated carbons for the adsorption of vitamin B12[J]. J Anal Appl Pyrolysis, 2015,111(1):247-253.  

    17. [17]

      LV Q, HE Z, ZHANG J, LIN Q. Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline-lignosulfonate composites[J]. J Anal Appl Pyrolysis, 2011,92(1):152-157. doi: 10.1016/j.jaap.2011.05.009

    18. [18]

      DAI T, JIA Y. Supramolecular hydrogels of polyaniline-poly (styrene sulfonate) prepared in concentrated solutions[J]. Polymer, 2011,52(12):2550-2558. doi: 10.1016/j.polymer.2011.04.006

    19. [19]

      JIA Y, JIANG J, SUN K. Electrocatalytic performance of Pt supported on polyaniline-poly (styrene sulfonate) hydrogel[J]. J Appl Polym Sci, 2012,125(1):3702-3707.  

    20. [20]

      JIA Y, JIANG J, SUN K, DAI T. Enhancement of capacitance performance of activated carbon-Polyaniline composites by introducing methyl orange[J]. Electrochim Acta, 2012,71(1):213-218.  

    21. [21]

      TAYLOR K K, COLE C V, SOORA R, DILDAY J C, HILL A M, BERRY B, VISWANTHAN T. The use of lignosulfonic acid in the synthesis of water-dispersible polyaniline[J]. J Appl Polym Sci, 2008,108(1):1496-1500.  

    22. [22]

      TRCHOVÁ M, KONYUSHENKO E, STEJSKAL J, KOVÁROVÁ J, CIRIC-MARJANOVIC G. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes[J]. Polym Degrad Stabil, 2009,94(6):929-938. doi: 10.1016/j.polymdegradstab.2009.03.001

    23. [23]

      ROZLIVKOVA Z, TRCHOVA M, EXNEROVA M, STEJSKAL J. The carbonization of granular polyaniline to produce nitrogen-containing carbon[J]. Synth Met, 2011,161(11/12):1122-1129.  

    24. [24]

      CAO Jian-yu, TANG Jia-li, SONG Ling-zheng, XU Juan, WANG Wen-chang, CHEN Zhi-dong. Functionalization of activated carbon with EDTA and its effect on electrocatalytic performance of carbon supported Pd catalysts[J]. Acta Phys-Chim Sin, 2013,29(1):144-150.  

    25. [25]

      WANG K, ZHAO J, LI H, ZHANG X, SHI H. Removal of cadmium (Ⅱ) from aqueous solution by granular activated carbon supported magnesium hydroxide[J]. [QX (Y12#]J Taiwan Inst Chem Eng, 2016,61(1):287-291.

    26. [26]

      HUANG X, JIA K, LIU X. Nano titanium dioxide/multi-walled carbon nanotube heterostructure containing single one carbon nanotube and its electromagnetic properties[J]. Nano, 2015,10(7):20151550102-1-1550102-7.  

    27. [27]

      WANG H, KONG W, ZHU W, WANG L, YANG S, LIU F. One-step synthesis of Pd nanoparticles functionalized crystalline nanoporous CeO2 and their application for solvent-free and aerobic oxidation of alcohols[J]. Catal Commun, 2014,50(1):87-91.  

    28. [28]

      LIU B, ZHENG L, LIAO S, ZENG J. Volume production of high loading Pt/C catalyst with high performance via a microwave-assisted organic colloid route[J]. J Power Sources, 2012,210(1):54-59.  

    29. [29]

      HA S, LARSEN R, ZHU Y, MASEL R. Direct formic acid fuel cells with 600mA·cm-2 at 0.4V and 22℃[J]. Fuel Cells, 2004,4(1):337-343.

    30. [30]

      HA S, LAREN R, MASEL R. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. J Power Sources, 2005,144(1):28-34. doi: 10.1016/j.jpowsour.2004.12.031

    31. [31]

      FATHIRAD F, AFZALI D, MOSTAFAVI A. Bimetallic Pd-Zn nanoalloys supported on Vulcan XC-72R carbon as anode catalysts for oxidation process in formic acid fuel cell[J]. Int J Hydrogen Energy, 2016,41(30):13220-13226. doi: 10.1016/j.ijhydene.2016.05.098

  • 加载中
    1. [1]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    2. [2]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    3. [3]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    4. [4]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Haiyang PengZhipeng XieShuiqing LuDa ZhangBin YangFeng Liang . Dual-functionality composites of polyaniline-coated oxidized carbon nanohorns: Efficient wave absorption and enhanced corrosion resistance. Chinese Chemical Letters, 2025, 36(6): 110818-. doi: 10.1016/j.cclet.2025.110818

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    10. [10]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    11. [11]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    12. [12]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    13. [13]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    14. [14]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    15. [15]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    16. [16]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    17. [17]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    18. [18]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

Metrics
  • PDF Downloads(1)
  • Abstract views(1167)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return