Citation: Zhang Jingshu, Tian Lei. Progress in Single Molecule Electrochemistry Based on Redox Recycling Signal Amplification[J]. Chemistry, ;2017, 80(12): 1104-1109. shu

Progress in Single Molecule Electrochemistry Based on Redox Recycling Signal Amplification

  • Corresponding author: Tian Lei, tianl@nwu.edu.cn
  • Received Date: 23 June 2017
    Accepted Date: 25 August 2017

Figures(5)

  • The development of modern analytical science has set a higher requirement for the sensitivity, selectivity and response speed of analytical methods. The detection and control of target molecules at the single molecule level is a challenging field that chemists have long dreamed of, and also a frontier for the development of analytical science in recent years. One of the challenges for direct analysis of single molecule by electrochemical methods is that the current caused by electron exchange of a single molecule during the redox process is too small to be detected by modern instruments. The direct electrochemical single-molecule analysis can be achieved through current amplification from massive repeat of electron exchange process on the electrode surface during redox reaction. This review summarized and compared the recent techniques and equipments for direct detection of single molecule electrochemically through amplification cycle. The future direction of development of single molecule electrochemistry was prospected too.
  • 加载中
    1. [1]

       

    2. [2]

      A B Zrimsek, N Chiang, M Mattei et al. Chem. Rev., 2017, 117(11):7583~7613. 

    3. [3]

       

    4. [4]

      A J Mayne, G Dujardin, G Comtet et al. Chem. Rev., 2006, 106(10):4355~4378. 

    5. [5]

      N G Walter, C Bustamante. Chem. Rev., 2014, 114(6):3069~3071. 

    6. [6]

      W P Ambrose, P M Goodwin, J H Jett et al. Chem. Rev., 1999, 99(10):2929~2956. 

    7. [7]

      D T Chiu, A J deMello, D Di Carlo et al. Chem, 2017, 2(2):201~223. 

    8. [8]

      W Q Shi, Y H Zeng, L S Zhou et al. Faraday Discuss., 2016, 193:81~97. 

    9. [9]

      C X Ma, W Xu, W R A Wichert et al. ACS Nano, 2016, 10(3):3658~3664. 

    10. [10]

       

    11. [11]

       

    12. [12]

      Y X Wang, X N Shan, N J Tao. Faraday Discuss., 2016, 193:9~39. 

    13. [13]

      R M Crooks. Faraday Discuss., 2016, 193:533~547. 

    14. [14]

      J D Zhang, A M Kuznetsov, I G Medvedev et al. Chem. Rev., 2008, 108(7):2737~2791. 

    15. [15]

      M V Mirkin, T Sun, Y Yu et al. Acc. Chem. Res., 2016, 49(10):2328~2335. 

    16. [16]

      J D Zhang, Q J Chi, A G Hansen et al. FEBS Lett., 2012, 586(5):526~535. 

    17. [17]

      J J Gooding. Angew. Chem. Int. Ed., 2016, 55(42):12956~12958. 

    18. [18]

      S G Lemay, S Kang, K Mathwig et al. Acc. Chem. Res., 2013, 46(2):369~377. 

    19. [19]

      M A G Zevenbergen, P S Singh, E D Goluch et al. Nano Lett., 2011, 11(7):2881~2886. 

    20. [20]

      M A G Zevenbergen, P S Singh, E D Goluch et al. Anal. Chem., 2009, 81(19):8203~8212. 

    21. [21]

    22. [22]

       

    23. [23]

      F R F Fan, J Kwak, A J Bard. J. Am. Chem. Soc., 1996, 118(40):9669~9675. 

    24. [24]

      J C Byers, B Paulose Nadappuram, D Perry et al. Anal. Chem., 2015, 87(20):10450~10456. 

    25. [25]

      P Sun, M V Mirkin. J. Am. Chem. Soc., 2008, 130(26):8241~8250. 

    26. [26]

      S Kang, A F Nieuwenhuis, K Mathwig et al. Faraday Discuss., 2016, 193:41~50. 

    27. [27]

      P S Singh, S G Lemay. Anal. Chem., 2016, 88(10):5017~5027. 

    28. [28]

      K Y Fu, D Han, C X Ma et al. Faraday Discuss., 2016, 193:51~64. 

    29. [29]

      D Han, L P Zaino Ⅲ, K Y Fu et al. J. Phys. Chem. C, 2016, 120(37):20634~20641. 

    30. [30]

      C X Ma, N M Contento, L R Gibson et al. ACS Nano, 2013, 7(6):5483~5490. 

    31. [31]

      C X Ma, N M Contento, P W Bohn. J. Am. Chem. Soc., 2014, 136(20):7225~7228. 

    32. [32]

      C X Ma, L P Zaino Ⅲ, P W Bohn. Chem. Sci., 2015, 6(5):3173~3179. 

  • 加载中
    1. [1]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    12. [12]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    13. [13]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    14. [14]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    15. [15]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

Metrics
  • PDF Downloads(31)
  • Abstract views(2254)
  • HTML views(511)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return