Citation: Li Run, Shi Xiaofei, Jiang Qinyuan, Zhan Chenhao, Cui Yiming, Liu Qingxiong, He Ziying, Wei Fei, Zhang Rufan. Structure Control and Synthesis of Ultralong Carbon Nanotubes: Progress and Challenges[J]. Chemistry, ;2020, 83(7): 588-599. shu

Structure Control and Synthesis of Ultralong Carbon Nanotubes: Progress and Challenges

Figures(9)

  • Carbon nanotubes (CNTs) have drawn intensive research interest in the past near 30 years due to their excellent properties and wide applications. In a large number of different types of CNTs, ultralong CNTs usually have perfect structures and lengths up to centimeters, even decimeters, showing extraordinary mechanical, electrical, and thermal properties. Ultralong CNTs are promising candidates for transparent displays, nanoelectronics, superstrong tethers, aeronautics and aerospace, etc. The controlled synthesis of ultralong CNTs with perfect structures is the key to fully exploit the extraordinary properties of CNTs. Over the past two decades, significant progress has been made in the study of ultralong CNTs, but there are also great challenges in controlled synthesis and mass production of ultralong CNTs, which limits their application. In this review, the progress on the growth mechanism, structure control, selective synthesis and extraordinary properties of ultralong CNTs and the innovative ideas in them is summarized. Meanwhile, the current challenges and future priorities were discussed. We hope that this review will shed light on the controlled synthesis, mass production and future application of ultralong CNTs and play a role in promoting the mass production and industrialization of ultralong CNTs with perfect structures.
  • 加载中
    1. [1]

      Wehling T O, Black-Schaffer A M, Balatsky A V. Adv. Phys., 2014, 63(1):1~76.

    2. [2]

      Zhang R, Zhang Y, Wei F. Chem. Soc. Rev., 2017, 46(12):3661~3715. 

    3. [3]

      Kong J, Soh H T, Cassell A M, et al. Nature, 1998, 395(6705):878~881. 

    4. [4]

      Cassell A M, Franklin N R, Tombler T W, et al. J. Am. Chem. Soc., 1999, 121(34):7975~7976. 

    5. [5]

      Kong J, Franklin N R, Zhou C W, et al. Science, 2000, 287(5453):622~625. 

    6. [6]

      Zhang Y, Chang A, Cao J, et al. Appl. Phys. Lett., 2001, 79(19):3155~3157. 

    7. [7]

      Kim W, Choi H C, Shim M, et al. Nano Lett., 2002, 2(7):703~708. 

    8. [8]

      Huang S, Cai X, Liu J. J. Am. Chem. Soc., 2003, 125(19):5636~5637. 

    9. [9]

      Zheng L X, O'Connell M J, Doorn S K, et al. Nat. Mater., 2004, 3(10):673~676. 

    10. [10]

      Ismach A, Kantorovich D, Joselevich E. J. Am. Chem. Soc., 2005, 127(33):11554~11555. 

    11. [11]

      Kocabas C, Shim M, Rogers J A. J. Am. Chem. Soc., 2006, 128(14):4540~4541. 

    12. [12]

      Jin Z, Chu H, Wang J, et al. Nano Lett., 2007, 7(7):2073~2079. 

    13. [13]

      Geblinger N, Ismach A, Joselevich E. Nat. Nanotechnol., 2008, 3(4):195~200.

    14. [14]

      Wang X S, Li Q, Xie J, et al. Nano Lett., 2009, 9(9):3137~3141. 

    15. [15]

      Wen Q, Qian W, Nie J, et al. Adv. Mater., 2010, 22(16):1867~1871. 

    16. [16]

      Zhou W, Ding L, Yang S, et al. ACS Nano, 2011, 5(5):3849~3857. 

    17. [17]

      Liu J, Wang C, Tu X, et al. Nat. Commun., 2012, 3:1199. 

    18. [18]

      Zhang R, Zhang Y, Zhang Q, et al. ACS Nano, 2013, 7(7):6156~6161. 

    19. [19]

      Yang F, Wang X, Zhang D, et al. Nature, 2014, 510(7506):522~524. 

    20. [20]

      Hu Y, Kang L, Zhao Q, et al. Nat. Commun., 2015, 6:6099. 

    21. [21]

      Zhang S, Kang L, Wang X, et al. Nature, 2017, 543(7644):234~238. 

    22. [22]

      Bai Y, Zhang R, Ye X, et al. Nat. Nanotechnol., 2018, 13(7):589~595. 

    23. [23]

      Zhu Z, Wei N, Cheng W, et al. Nat. Commun., 2019, 10:4467. 

    24. [24]

      Huang S, Woodson M, Smalley R, et al. Nano Lett., 2004, 4(6):1025~1028. 

    25. [25]

      Wen Q, Zhang R, Qian W, et al. Chem. Mater., 2010, 22(4):1294~1296.

    26. [26]

      Reina A, Hofmann M, Zhu D, et al. J. Phys. Chem. C, 2007, 111(20):7292~7297. 

    27. [27]

      Ding F, Harutyunyan A R, Yakobson B I. PNAS, 2009, 106(8):2506~2509. 

    28. [28]

      Flory P J. J. Am. Chem. Soc., 1936, 58:1877~1885. 

    29. [29]

      Zhang R, Xie H, Zhang Y, et al. Carbon, 2013, 52:232~238. 

    30. [30]

      Charlier J C. Acc. Chem. Res., 2002, 35(12):1063~1069. 

    31. [31]

      Choi H J, Ihm J, Louie S G, et al. Phys. Rev. Lett., 2000, 84(13):2917~2920. 

    32. [32]

      Krasheninnikov A V, Nordlund K, Sirvio M, et al. Phys. Rev. B, 2001, 63(24):245405. 

    33. [33]

      Sammalkorpi M, Krasheninnikov A, Kuronen A, et al. Phys. Rev. B, 2004, 70(24):245416. 

    34. [34]

      Chico L, Benedict L X, Louie S G, et al. Phys. Rev. B, Condens. Matter, 1996, 54(4):2600~2606. 

    35. [35]

      Charlier J, Ebbesen T W, Lambin P. Phys. Rev. B, Condens. Matter, 1996, 53:11108~11113. 

    36. [36]

      Zhu L, Wang J, Ding F. ACS Nano, 2016, 10(6):6410~6415. 

    37. [37]

      Xu Z, Yan T, Ding F. Chem. Sci., 2015, 6(8):4704~4711. 

    38. [38]

      Page A J, Ohta Y, Okamoto Y, et al. J. Phys. Chem. C, 2009, 113(47):20198~20207. 

    39. [39]

      Yuan Q, Xu Z, Yakobson B I, et al. Phys. Rev. Lett., 2012, 108(19):245505.

    40. [40]

      Ding F. Phys. Rev. B, 2005, 72(24):245409. 

    41. [41]

      Liu Z, Jiao L, Yao Y, et al. Adv. Mater., 2010, 22(21):2285~2310. 

    42. [42]

      Chen Y, Zhang Y, Hu Y, et al. Adv. Mater., 2014, 26(34):5898~5922. 

    43. [43]

      Chen Y, Zhang J. Acc. Chem. Res., 2014, 47(8):2273~2281. 

    44. [44]

      Peng B, Yao Y, Zhang J. J. Phys. Chem. C, 2010, 114(30):12960~12965. 

    45. [45]

      Zhu Z, Wei N, Xie H, et al. Sci. Adv., 2016, 2(11):e1601572.

    46. [46]

      Zhang R, Ning Z, Zhang Y, et al. Nat. Nanotechnol., 2013, 8(12):912~916. 

    47. [47]

      Wei C, Cho K, Srivastava D. Phys. Rev. B, 2003, 67(11):115407. 

    48. [48]

      Qian D, Wagner G J, Liu W K, et al. Appl. Mech. Rev., 2002, 55(6):495~533. 

    49. [49]

      Yu M, Lourie O, Dyer M J, et al. Science, 2000, 287(5453):637~640. 

    50. [50]

      Wu Y, Huang M, Wang F, et al. Nano Lett., 2008, 8(12):4158~4161. 

    51. [51]

      Chang C C, Hsu I K, Aykol M, et al. ACS Nano, 2010, 4(9):5095~5100. 

    52. [52]

      Peng B, Locascio M, Zapol P, et al. Nat. Nanotechnol., 2008, 3(10):626~631. 

    53. [53]

      Zhang R, Wen Q, Qian W, et al. Adv. Mater., 2011, 23(30):3387~3391. 

    54. [54]

      Wei N, Liu Y, Xie H, et al. Appl. Phys. Lett., 2014, 105(7):073107. 

    55. [55]

      Dienwiebel M, Verhoeven G S, Pradeep N, et al. Phys. Rev. Lett., 2004, 92(12):126101. 

    56. [56]

      Hirano M, Shinjo K. Phys. Rev. B, Condens. Matter, 1990, 41(17):11837~11851. 

    57. [57]

      Hirano M, Shinjo K, Kaneko R, et al. Phys. Rev. Lett., 1991, 67(19):2642~2645. 

    58. [58]

      Hong G, Zhou M, Zhang R, et al. Angew. Chem., Int. Ed., 2011, 50(30):6819~6823. 

    59. [59]

      Wang H, Liu J, Guo Z, et al. Nanoscale Microscale Thermophys. Eng., 2013, 17(4):349~365. 

    60. [60]

      Behabtu N, Young C C, Tsentalovich D E, et al. Science, 2013, 339(6116):182~186. 

    61. [61]

      Davis V A, Parra-Vasquez A N G, Green M J, et al. Nat. Nanotechnol., 2009, 4(12):830~834. 

    62. [62]

      Li Q, Zhang X, DePaula R F, et al. Adv. Mater., 2006, 18(23):3160~3163. 

    63. [63]

      Miyata Y, Shiozawa K, Asada Y, et al. Nano Res., 2011, 4(10):963~970. 

    64. [64]

      Franklin A D, Luisier M, Han S J, et al. Nano Lett., 2012, 12(2):758~762. 

    65. [65]

      Shulaker M M, Hills G, Patil N, et al. Nature, 2013, 501(7468):526~530. 

    66. [66]

      Tulevski G S, Franklin A D, Frank D, et al. ACS Nano, 2014, 8(9):8730~8745. 

    67. [67]

      Rutherglen C, Jain D, Burke P. Nat. Nanotechnol., 2009, 4(12):811~819. 

    68. [68]

      Cao Y, Brady G J, Gui H, et al. ACS Nano, 2016, 10(7):6782~6790. 

  • 加载中
    1. [1]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    5. [5]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    6. [6]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    7. [7]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    8. [8]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    12. [12]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

Metrics
  • PDF Downloads(23)
  • Abstract views(1589)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return