Citation: TAN Qi-hang, CAO Yang, LI Jin. Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1323-1331. shu

Preparation and characterization of Mo2N/Zr-MCM-41 catalyst and its performance in hydrodeoxygenation of Jatropha curcas oil

  • Corresponding author: LI Jin, 316800681@qq.com
  • Received Date: 17 July 2018
    Revised Date: 15 September 2018

    Fund Project: the Hainan Provincial Key Projects ZDYF2018134The project was supported by the Hainan Provincial Key Projects (ZDYF2018134)

Figures(5)

  • MCM-41 and Zr-MCM-41 with different initial n(Si)/n(Zr) ratios were synthesized by hydrothermal method. Mo2N/Zr-MCM-41 hydrodeoxygenation catalysts were prepared by (NH4)6Mo7O24 carrier co-impregnation, calaination, temperature programing and nitridation, and characterized by XRD, XPS, TEM and Py-FTIR methods. The catalytic performance of Mo2N/Zr-MCM-41 in hydrodeoxygenation of Jatropha curcas oil was evaluated in a high pressure reactor. The results indicate that Zr modified carrier has the same pore structure as pure silicon MCM-41, and the value of L acid and B acid increases. As the active component, the Mo2N has an excellent HDO performance. Under the reaction temperature of 350℃ and the hydrogen pressure of 3.0 MPa, the catalyzed product oil is mainly composed of straight chain alkanes and aromatic compounds, accounting for more than 90% of the product components. The deoxygenation rates of the new catalysts with different n(Si)/n(Zr) ratios are all above 98%, and the content of aromatic compounds is higher than that of straight chain alkanes, which accounts for 72.09% of the total composition. The aromatic compounds are mainly single ring and bicyclic aromatic hydrocarbons with the length of carbon chain of C8-16. After the leprosy oils catalyzed by Mo2N/Zr-MCM-41 are fractionated, it can be prepared to be biofuels.
  • 加载中
    1. [1]

      SENSÖZ S, ANGIN D, YORGUN S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L. :Fuel properties of bio-oil[J]. Biomass Bioenergy, 2000,19(4):271-279. doi: 10.1016/S0961-9534(00)00041-6

    2. [2]

      WANG Y, TAO H, LIU K, WU J, FANG Y. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing:Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis[J]. Bioresour Technol, 2012,108(108):280-284.  

    3. [3]

      HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4098. doi: 10.1021/cr068360d

    4. [4]

      YANG Y, LUO H, TONG G, SMITH K J, TYE C T. Hydrodeoxygenation of phenolic model compounds over MoS2 catalysts with different structures[J]. Chin J Chem Eng, 2008,16(5):733-739. doi: 10.1016/S1004-9541(08)60148-2

    5. [5]

      SENOL O İ, VILJAVA T R, KRAUSE A O I. Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3, and CoMo/γ-Al2O3, catalyst:The effect of water[J]. Catal Today, 2005,106(1):186-189.  

    6. [6]

      COUMANS A E, HENSEN E J M. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide[J]. Appl Catal B:Environ, 2017,201:290-301. doi: 10.1016/j.apcatb.2016.08.036

    7. [7]

      WANG W, LI L, TAN S, Wu K, ZHU G, LIU Y, XU Y, YANG Y. Preparation of NiS2//MoS2, catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol[J]. Fuel, 2016,179:1-9. doi: 10.1016/j.fuel.2016.03.068

    8. [8]

      WAWRZETZ A, PENG B, HRABAR A, JENTYS A, LEMONIDOU A A, LERCHER J A. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol[J]. J Catal, 2010,269(2):411-420. doi: 10.1016/j.jcat.2009.11.027

    9. [9]

      LEE E H, PARK R S, KIM H, PARK S H, JUNG S C, JEON J K, KIM S C, PARK T K. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. J Ind Eng Chem, 2016,37:18-21. doi: 10.1016/j.jiec.2016.03.019

    10. [10]

      DWIATMOKO A A, ZHOU L, KIM I, CHOI J W, SUH D J, HA J M. Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts[J]. Catal Today, 2016,265:192-198. doi: 10.1016/j.cattod.2015.08.027

    11. [11]

      MONNIER J, SULIMMA H, DALAI A, CARAVAGGIO G. Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides[J]. Appl Catal A:Gen, 2010,382(2):176-180. doi: 10.1016/j.apcata.2010.04.035

    12. [12]

      GHAMPSON I T, SEP ÚLVEDA C, GARCIA R, FREDERICK B G, WHEELER M C, ESCALONA N, DESISTO W J. Guaiacol transformation over unsupported molybdenum-based nitride catalysts[J]. Appl Catal A:Gen, 2012,413(4):78-84.  

    13. [13]

      TOBA M, ABE Y, KURAMOCHI H, OSAKO M, MOCHIZUKI T, YOSHIMURA Y. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts[J]. Catal Today, 2011,164(1):533-537. doi: 10.1016/j.cattod.2010.11.049

    14. [14]

      STINNER C, TANG Z, HAOUAS M, WEBER T, PRINS R. Preparation and 31P NMR characterization of nickel phosphides on silica[J]. J Catal, 2002,208(2):456-466. doi: 10.1006/jcat.2002.3577

    15. [15]

      BLASCO T, CORMA A, NAVARRO M T, PARIENTE J P. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures[J]. Cheminform, 2010,27(3):65-74.  

    16. [16]

      XU J, CHU W, LUO S. Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability[J]. J Mol Catal A:Chem, 2006,256(1):48-56.  

    17. [17]

      ZIOLEK M, NOWAK I, KILOS B, SOBCZAK I, DECYK P, TREJDA M, VOLTA J C. Template synthesis and characterisation of MCM-41 mesoporous molecular sieves containing various transition metal elements-TME (Cu, Fe, Nb, V, Mo)[J]. J Phy Chem Solids, 2004,65(2):571-581.  

    18. [18]

      LIM S, CIUPARU D, YANG Y, DU G, PFEFFERLE L D, HALLER G L. Improved synthesis of highly ordered Co-MCM-41[J]. Microporous Mesoporous Mater, 2007,101(1):200-206.  

    19. [19]

      LAHA S C, MUKHERJEE P, SAINKAR S R, KUMAR R. Cerium containing MCM-41-Type mesoporous materials and their acidic and redox catalytic properties[J]. J Catal, 2002,207(2):213-223. doi: 10.1006/jcat.2002.3516

    20. [20]

      CHEN L F, WANG J A, NOREÑA L E, AGUILAR J, NAVARRETE J, SALAS P, MONTOYA J A, ANGEL P D. Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H 3 PW 12 O 40/Zr-MCM-41 catalysts[J]. J Solid State Chem, 2007,180(10):2958-2972. doi: 10.1016/j.jssc.2007.08.023

    21. [21]

      JIANG T S, ZHAO Q, YIN H B. Synthesis and characterization of Ni-mesoporous molecular sieves with high stability[J]. Inorg Mater, 2007,43(1):30-34. doi: 10.1134/S0020168507010086

    22. [22]

      DONG Z, YE F, ZHANG H. Mesoporous structure stability of zirconium-doped mesoporous silica at elevated temperature[J]. Mater Lett, 2009,63(27):2343-2345. doi: 10.1016/j.matlet.2009.08.003

    23. [23]

      QIAN Z, ZHOU X, LI Y, LI M, JIANG T, YIN H, CHANG S. Effect of the thermal and hydrothermal treatment on textural properties of Zr-MCM-41 mesoporous molecular sieve[J]. Appl Surf Sci, 2009,255(12):6397-6403. doi: 10.1016/j.apsusc.2009.02.024

    24. [24]

      LI Fu-xiang, ZHANG Xiang-ti, LI Rui-feng, XIE Ke-chang. Synthesis and characterization of mesoporous Zr-MCM-41[J]. J Fuel Chem Technol, 2004,32(4):471-474. doi: 10.3969/j.issn.0253-2409.2004.04.017 

    25. [25]

      WANG Wei-yan, YANG Yun-quan, LUO He-an, YANG Yan-song, HU Tao, LIU Wen-ying, HE Bing, QING Bai-hao. Preparation of TiO2-Al2O3 composite support and its performance in catalystic hydrodeoxygenation[J]. J Fuel Chem Technol, 2011,39(12):924-929. doi: 10.3969/j.issn.0253-2409.2011.12.008 

    26. [26]

      REN Hang-tao. Study on hydrosiomerization of molecular sieve catalysts for alkanes[D]. Tianjin: Nankai University, 2005. 

    27. [27]

      LI Z, GAO L, ZHENG S. Investigation of the dispersion of MoO3, onto the support of mesoporous silica MCM-41[J]. Appl Cataly A:Gen, 2002,236(1):163-171.  

    28. [28]

      XIAO Jin-bing, LUO You-xin, LUO Gen-xiang, SUN Zhao-lin, XIN Qin, LI Can. Surface properties and hydrogenation/dehydrogenation performance of alumina-supported molybdenum nitride[J]. Chin J Catal, 2001,22(6):571-574. doi: 10.3321/j.issn:0253-9837.2001.06.017

    29. [29]

      LIU Zheng-lin, MENG Ming, FU Yi-lu, JIANG Ming, HU Tian-dou, XIE Ya-ning, LIU Tao. Structure characterization of γ-Mo2N and Mo nitrides supported on zeolites[J]. Acta Phys-Chim Sin, 2001,17(7):631-635. doi: 10.3866/PKU.WHXB20010712

    30. [30]

      HADA K, MASATOSHI NAGAI A, OMI S. Characterization and HDS activity of cobalt molybdenum nitrides[J]. J Phys Chem B, 2001,105(19):217-219.  

    31. [31]

      NAGATA T, KOBLMÜLLER G, BIERWAGEN O, GALLINAT C S, SPECK J S. Surface structure and chemical states of a-plane and c-plane InN films[J]. Appl Phy Lett, 2009,95(13):132104-132104-3. doi: 10.1063/1.3238286

    32. [32]

      NAGAI M, JUMPEI TAKADA A, OMI S. XPS study of nitrided molybdena/titania catalyst for the hydrodesulfurization of dibenzothiophene[J]. J Phy Chem B, 1999,103(46):10180-10188. doi: 10.1021/jp991856x

    33. [33]

      LIU Wei-qiao, LIU Jie, ZHAO Lin, SUN Gui-da, WU Yi-zhi, ZHANG Jin-yuan. Advance on study of Mo2N catalyst[J]. J Fushun Pet Inst, 2003,23(3):18-21. doi: 10.3969/j.issn.1672-6952.2003.03.005

    34. [34]

      LUO Nan, CAO Yang, LI Jin, GUO Wei, ZHAO Zi-wei. Preparation of Ni2P/Zr-MCM-41 catalyst and its performance in the hydrodeoxygenation of Jatropha curcas oil[J]. J Fuel Chem Technol, 2016,44(1):76-83. doi: 10.3969/j.issn.0253-2409.2016.01.011 

    35. [35]

      YANG Shu-wu, XU Jiang. Synthesis and characterization of SiO2 supported molybdenum nitride hydrodenitro genation catalysts[J]. Chin J Catal, 1998,V19(2):125-129. doi: 10.3321/j.issn:0253-9837.1998.02.006

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    4. [4]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    10. [10]

      . Cover and Table of Contents for Vol.41 No. 2. Acta Physico-Chimica Sinica, 2025, 41(2): -.

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    13. [13]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    14. [14]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    15. [15]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    18. [18]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    19. [19]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(8)
  • Abstract views(1526)
  • HTML views(214)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return