Citation: WANG Cai-hong, LIN Xiong-chao, YANG Sa-sha, LIU Shu-qin, YOON Seongho, WANG Yong-gang. Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeOx quaternary system[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1025-1033. shu

Evaluation of the thermal and rheological characteristics of minerals in coal using SiO2-Al2O3-CaO-FeOx quaternary system

  • Corresponding author: LIN Xiong-chao, 
  • Received Date: 13 May 2016
    Revised Date: 9 July 2016

    Fund Project: the National Natural Science Foundation of China 21406261

Figures(8)

  • In the present work, the synergistic effect of components on the mineral behavior in the SiO2-Al2O3-CaO-FeOx quaternary system was tentatively evaluated. The mineral transformation and reaction were analyzed by thermo-mechanical analyzer (TMA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and thermodynamic calculation (FactSage). In addition, the apparent viscosities of synthetic slags, expressed as a function of temperature and composition, were determined using a high temperature rotary viscometer with temperature ranging from 1 700℃ to re-solidifying temperature. The results demonstrated that the TMA and DSC approaches were applicable to characterize the mineral behavior under in-situ conditions. Silica and alumina preferred to be transformed to high temperature cristobalite and α-alumina with relatively stable structure and high viscosity, respectively. On the other hand, the reaction and transformation of silica and alumina could be accelerated by some valuable fluxing agents, particularly calcium oxide and iron oxides. The addition of ferrous oxide into synthetic slags could lower its viscosity compared with that of ferric oxide and ferroferric oxide. Furthermore, the reduction of iron oxides to metallic iron remarkably increased the viscosity. Ferric oxide may take part in the random glass network in a similar fashion with alumina. Besides, iron oxides with the oxidation state of Fe2+ may also act as a modifier under slightly reducing conditions and higher temperatures. The sensitivity of viscosity of mineral matters to temperature excursion decreased with increasing calcium oxide content as calcium oxide was able to enhance the solution ability of iron oxides in the SiO2-Al2O3-CaO-FeOx quaternary system.
  • 加载中
    1. [1]

      ELLIOTT L. Dissolution of lime into synthetic coal ash slags[J]. Fuel Process Technol, 1998,56(56):45-53.  

    2. [2]

      NOWOK J W, BENSON S A, STEADMAN E N, BREKKE D W. The effect of surface-tension viscosity ratio of melts on the sintering propensity of amorphous coal ash slags[J]. Fuel, 1993,72(7):1055-1061. doi: 10.1016/0016-2361(93)90308-O

    3. [3]

      HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J]. Fuel, 1999,78(15):1831-1840. doi: 10.1016/S0016-2361(99)00094-0

    4. [4]

      CHAKRABORTY S, SARKAR S, GUPTA S, RAY A. Damage monitoring of refractory wall in a generic entrained-bed slagging gasification system[J]. Proc Inst Mech Eng Part A, 2008,222(8):791-807. doi: 10.1243/09576509JPE638

    5. [5]

      BRYANT G W, MCLENNAN A R, BAILEY C W, STANMORE B R, WALL T F. Index for iron-based slagging for pulverized coal firing in oxidizing and reducing conditions[J]. Energy Fuels, 2000,14(2):349-354. doi: 10.1021/ef990127d

    6. [6]

      HURST H J, NOVAK F, PATTERSON J H. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel, 1999,78(4):439-444. doi: 10.1016/S0016-2361(98)00162-8

    7. [7]

      HUFFMAN G P, HUGGINS F E, DUNMYRE G R. Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmospheres[J]. Fuel, 1981,60(7):585-597. doi: 10.1016/0016-2361(81)90158-7

    8. [8]

      WU H W, WEE H L, ZHANG D K, FRENCH D. The effect of combustion conditions on mineral matter transformation and ash deposition in a utility boiler fired with a sub-bituminous coal[J]. Proc Combust Inst, 2005,30(2):2981-2989. doi: 10.1016/j.proci.2004.08.059

    9. [9]

      RUPRECHT P, KONKOL W, CORNILS B, LANGHOFF J, BRUNKE W, SCHAFER W. Slagging gasification of coal under addition of flux agents[J]. Fuel Process Technol, 1985,11(1):1-12. doi: 10.1016/0378-3820(85)90011-6

    10. [10]

      GROEN J C, BROOKER D D, WELCH P J, OH M S. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses[J]. Fuel Process Technol, 1998,56(1/2):103-127.  

    11. [11]

      LIN X C, IDETA K, MIYAWAKI J, TAKEBE H, YOON S H, MOCHIDA I. Correlation between fluidity properties and local structures of three typical asian coal ashes[J]. Energy Fuels, 2012,26(4):2136-2144. doi: 10.1021/ef201771f

    12. [12]

      BAI J, LI W, LI B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008,87(4):583-591.  

    13. [13]

      AIKIN T L H, CASHION J D, OTTREY A L. Mossbauer analysis of iron phases in brown coal ash and fireside deposits[J]. Fuel, 1984,63(9):1269-1275. doi: 10.1016/0016-2361(84)90436-8

    14. [14]

      MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during of combustion in reducing conditions[J]. Energy Fuels, 2000,14(1):150-159. doi: 10.1021/ef990095u

    15. [15]

      SCHOTTE E, LORENZ H, RAU H. Investigating gasification processes of solid fuels by in situ gaspotentiometric oxygen probes[J]. Chem Eng Technol, 2003,26(7):774-778. doi: 10.1002/ceat.200301667

    16. [16]

      SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009,23(4):1990-1997. doi: 10.1021/ef800974d

    17. [17]

      WALL T F, LOWE A, WIBBERLEY L J, STEWART I M. Mineral matter in coal and the thermal performance of large boilers[J]. Prog Energy Combust Sci, 1979,5(1):1-29. doi: 10.1016/0360-1285(79)90017-0

    18. [18]

      LLOYD W G, RILEY J T, ZHOU S, RISEN M A, TIBBITTS R L. Ash fusion temperatures under oxidizing conditions[J]. Energy Fuels, 1993,7(4):490-494. doi: 10.1021/ef00040a009

    19. [19]

      BRYANT G W, MCLENNAN A R, BAILEY C W, STANMORE B R, WALL T F. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions[J]. Energy Fuels, 2000,14(2):308-315. doi: 10.1021/ef990092h

    20. [20]

      URBAIN G, BOTTINGA Y, RICHET P. Viscosity of liquid silica, silicates and alumino-silicates[J]. Geochim Cosmochim Acta, 1982,46(6):1061-1072.  

    21. [21]

      ARVELAKIS S, JENSEN P A, DAM-JOHANSEN M. Simultaneous thermal analysis (STA) on ash from high-alkali biomass[J]. Energy Fuels, 2004,18(4):1066-1076. doi: 10.1021/ef034065+

    22. [22]

      PINTO R R C, VALLE M L M, SOUSA-AGUIAR E F. The influence of silica to alumina ratio on Y zeolite activity by simultaneous TG and DSC analysis[J]. J Thermal Anal Calorim, 2002,67(2):439-443(5). doi: 10.1023/A:1013976512286

    23. [23]

      GUO X H, ZHONG S L, ZHANG J, WANG W, MAO J J, XIE G. Synthesis, phase transition, and magnetic property of iron oxide materials: Effect of sodium hydroxide concentrations[J]. J Mater Sci, 2010,45(23):6467-6473. doi: 10.1007/s10853-010-4733-8

    24. [24]

      EBSWORTH E A V, WEIL J A. Paramagnetic resonance absorption in peroxydicobalt complexes[J]. J Phys Chem, 2002,63(11):1890-1900.

    25. [25]

      RISTIĆ M, POPOVIĆ S, MUSIĆ S. Investigation of crystalline phases in the alpha-Fe2O3/alpha-Al2O3 system[J]. Croat Chem Acta, 2009,82(2):397-404.

    26. [26]

      NOWOK J W, HURLEY J P, STANLEY D C. Local structure of a lignitic coal ash slag and its effect on viscosity[J]. Energy Fuels, 1993,7(6):1135-1140. doi: 10.1021/ef00042a063

    27. [27]

      EBNER A D, RITTER J A. Retention of iron oxide particles by stainless steel and magnetite magnetic matrix elements in high-gradient magnetic separation[J]. Sep Sci Technol, 2004,39(12):2863-2890. doi: 10.1081/SS-200028811

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    3. [3]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    4. [4]

      Sixin AiWenxiu LiHuayong ZhuYang WanWeiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904

    5. [5]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    6. [6]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    7. [7]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    8. [8]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    9. [9]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    10. [10]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    11. [11]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    12. [12]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    13. [13]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    14. [14]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    15. [15]

      Han HanBi-Te ChenJia-Rong DingJin-Ming SiTian-Jiao ZhouYi WangLei XingHu-Lin Jiang . A PDGFRβ-targeting nanodrill system for pancreatic fibrosis therapy. Chinese Chemical Letters, 2024, 35(10): 109583-. doi: 10.1016/j.cclet.2024.109583

    16. [16]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    17. [17]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    18. [18]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    19. [19]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    20. [20]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

Metrics
  • PDF Downloads(0)
  • Abstract views(1261)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return