Citation: Yimeng Yang, Xianqiong Jiang, Yuanyuan Li, Wei Tan. Review on Photocatalyzed Cycloaddition Reaction with Chromium Catalysts[J]. Chemistry, ;2021, 84(4): 353-358. shu

Review on Photocatalyzed Cycloaddition Reaction with Chromium Catalysts

  • Corresponding author: Yimeng Yang, yangmeng0306@163.com
  • Received Date: 6 September 2020
    Accepted Date: 2 November 2020

Figures(11)

  • The preparation of biologically/pharmacologically active compounds via economical and environmentally friendly strategies have received increasing attention in the past century, and have shown great utility in organic synthesis, pharmaceutical chemistry and bio-chemistry. The recent development of transition metal catalyzed photoredox reaction sheds light on this problem. Nonetheless, the replacement of the rare-metal catalyst (Ru or Ir complexes) with earth-abundant metal catalysts (Chromium catalysts) is unambiguously more attractive for practical applications. To this end, the chromium complex as the photocatalyst have been successfully accomplished with high activities. The high chemo-, regio-and stereo-selectivity [2+N] cycloaddition of alkene/alkyne with photocatalysts was the most general protocol to form important ring motif in various natural products and medicinally active compounds. In this paper, the recent experimental and theoretical exploration on Cr complex catalyzed photoredox [2+N] cycloaddition reaction were reviewed. On this basis, the unsettled problems and future development direction were prospected. We hope the provided insights could benefit the deep understanding of Cr complexes catalysed [2+N] cycloaddition and the development of new first-row transition metal catalyst and synthetic strategies.
  • 加载中
    1. [1]

      Turro N J, Ramamurthy V, Scaiano J C. Modern Molecular Photochemistry of Organic Molecules. University Science Books: Sausalito, CA, 2010.

    2. [2]

      Ding K, Dai L X. Organic Chemistry-Breakthroughs and Perspectives, Wiley-VCH, Weinheim, 2012.

    3. [3]

      Schultz D M, Yoon T P. Science, 2014, 343(6174): 985~985.

    4. [4]

      Banerjee A, Lei Z, Ngai M Y. Synthesis, 2019, 51(02): 303~333. 

    5. [5]

      Prier C K, Rankic D A, Macmillan D W C. Chem. Rev., 2013, 113(7): 5322~5363. 

    6. [6]

      Wang C S, Dixneuf P H, Soulé J F. Chem. Rev., 2018, 118(16): 7532~7585. 

    7. [7]

      Zeitler K. Angew. Chem. Int. Ed., 2009, 48(52): 9785~9789. 

    8. [8]

      Romero N A, Nicewicz D A. Chem. Rev., 2016, 116(17): 10075~10166. 

    9. [9]

      Narayanam J M R, Stephenson C R J. Chem. Soc. Rev., 2011, 40(1): 102~113. 

    10. [10]

      McDaniel M A, Tseng H W, Hill E A, et al. Inorg. Chem., 2013, 52: 1368~1378. 

    11. [11]

      Barker K D, Benoit B R, Bordelon J A. Inorg. Chim., 2001, 322(1): 74~78.

    12. [12]

      Feng Y, Hui L, Jing Z, et al. Water Air Soil Pollut., 2014, 225: 1875. 

    13. [13]

      McDaniel A M, Tseng H W, Damrauer N H, et al. Inorg. Chem., 2010, 49(17): 7981~7991. 

    14. [14]

      Serpone N, Jamieson M A, Henry M S et al. J. Am. Chem. Soc., 1979, 101: 2907~2916. 

    15. [15]

      Stevenson S M, Shores M P, Ferreira E M. Angew. Chem. Int. Ed., 2015, 54(22): 6506~6510. 

    16. [16]

      Higgins R F, Fatur S M, Shepard S G, et al. J. Am. Chem. Soc., 2016, 138(16): 5451~5464. 

    17. [17]

      Yang Y M, Liu Q, Zhang L, et al. Organometallics, 2017, 36(3): 687~698. 

    18. [18]

      Stevenson S M, Higgins R F, Shores M P, et al. Chem. Sci., 2017, 8(1): 654~660. 

    19. [19]

      Higgins R F, Fatur S M, Damrauer N H, et al. ACS Catal., 2018, 8: 9216~9225. 

    20. [20]

      Sarabia F J, Ferreira E M. Org. Lett., 2017, 19: 2865~2868. 

    21. [21]

      Stufflebeme G, Lorenz K T, Bauld N L. J. Am. Chem. Soc., 1986, 108(14): 4234~4235. 

    22. [22]

      Sarabia F J, Li Q, Ferreira E M. Angew. Chem. Int. Ed., 2018, 57(34): 11015~11019. 

  • 加载中
    1. [1]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    5. [5]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    7. [7]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    8. [8]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    10. [10]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    16. [16]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(19)
  • Abstract views(1241)
  • HTML views(445)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return