Citation: HUANG Yu-hui, REN Guo-qing, SUN Jiao, CHEN Xiao-rong, MEI Hua. Study on the vapor phase hydrogenation of furfural to 2-methylfuran on Cu/ZnO catalyst[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1349-1355. shu

Study on the vapor phase hydrogenation of furfural to 2-methylfuran on Cu/ZnO catalyst

  • Corresponding author: CHEN Xiao-rong, chenxr@126.com
  • Received Date: 7 July 2016
    Revised Date: 6 August 2016

Figures(10)

  • A series of Cu/ZnO catalysts were prepared by using co-precipitation method and their performance for the furfural gas phase hydrogenation to 2-methylfuran was investigated in a fixed bed reactor. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption desorption, H2 temperature programmed reduction (H2-TPR), scanning electron microscope (SEM) and NH3-temperature programmed desorption (NH3-TPD) techniques to analyze the roles of Cu0 and ZnO. The results showed that Cu0 was the active center for the furfural hydrogenation and the addition of ZnO in Cu catalysts can reduce the crystal size, enhance the surface area, improve the reduction and increase the surface acidity of the catalysts. When the molar ratio of Cu/Zn molar ratio is 1:2, Cu1Zn2 catalyst showed the highest selectivity to 2-methylfuran due to its suitable numbers of redox active centers and weak acidic sites. Under the atmospheric pressure, reaction temperature of 200℃, 4:1 molar ratio of hydrogen to furfural and furfural volume space velocity of 0.3 h-1, the conversion of furfural reached almost 100.0% with 93.6% selectivity to 2-methylfuran over Cu1Zn2 catalyst.
  • 加载中
    1. [1]

      VAN P, R J, JCV D W, DE J E. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chem Rev, 2013,113(3):1499-1597. doi: 10.1021/cr300182k

    2. [2]

      BINDER J B, RAINES R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. J Am Chem Soc, 2009,131(5):1979-1985. doi: 10.1021/ja808537j

    3. [3]

      MAMMAN A S, LEE J M, KIM Y C. Furfural:Hemicellulose/xylosederived biochemical[J]. Biofuel Bioprod Bior, 2008,2(5):438-454. doi: 10.1002/bbb.v2:5

    4. [4]

      PACE V, HOYOS P, CASTOLDI L. ChemInform abstract:2-methyltetrahydrofuran (2-MeTHF):A biomass-derived solvent with broad application in organic chemistry[J]. ChemSusChem, 2012,5(8):1369-1379. doi: 10.1002/cssc.v5.8

    5. [5]

      BIRADAR N S, HENNGNE A M, BIRAJDAR S N. Single-pot formation of THFAL via catalytic hydrogenation of FFR over Pd/MFI catalyst[J]. Acs Sustainable Chem Eng, 2013,2(2):272-281.  

    6. [6]

      HUBER G W, SARA I A, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4498. doi: 10.1021/cr068360d

    7. [7]

      XIAO M, JING C, XU H. Laminar burning characteristics of 2-methylfuran and isooctane blend fuels[J]. Fuel, 2014,116(1):281-291.  

    8. [8]

      BURNETTL W, JOHNS I B, HOLDREN R F. Production of 2-methylfuran by vapor-phase hydrogenation of furfural[J]. Ind Eng Chem, 2002,74(2):129-130.  

    9. [9]

      WU Jing, SHEN Yan-ming, WANG Kun-yuan. Study on structure of CuO-CaO/SiO2 ultrafine catalysts and reaction performance for hydrogenation of furfural[J]. J Mol Catal, 2003,17(5):321-325.  

    10. [10]

      MIAO Xiao-pei, FENG Hai-qiang, HUANG Wen-qing. Preparation and catalytic properties of nanometer CuO catalyst for hydrogena[J]. Petrochem Technol, 2015,44(8):975-999.  

    11. [11]

      KAI Y, XU W, XIA A, XIAN M X. Novel preparation of nano-composite CuO-Cr2O3 using ctab-template method and efficient for hydrogenation of biomass-derived furfural[J]. Funct Mater Lett, 2013,6(1):130-140.  

    12. [12]

      HUANG W, LI H, ZHU B, FENG Y. Selective hydrogenation of furfural to furfuryl alcohol over catalysts prepared via sonochemistry[J]. Ultrason Sonochem, 2007,14(1):67-74. doi: 10.1016/j.ultsonch.2006.03.002

    13. [13]

      DONG F, ZHU Y, ZHENG H. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran:The synergistic effect of metal and acid sites[J]. J Mol Catal A:Chem, 2015,398:140-148. doi: 10.1016/j.molcata.2014.12.001

    14. [14]

      NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. Acs Catal, 2013,3(12):2655-2668. doi: 10.1021/cs400616p

    15. [15]

      HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. J Fuel Chem Technol, 2016,44(6):726-731.  

    16. [16]

      YANG J, ZHENG H Y, ZHU Y L. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun, 2004,5(9):505-510. doi: 10.1016/j.catcom.2004.06.005

    17. [17]

      FANG De-ren, LIU Zhong-ming, ZHANG Hui-ming. Influence of temperature on the properties of precursors of CuO/ZnO/Al2O3 catalysts[J]. Nat Gas Chem Ind, 2004,29(4):28-32.  

    18. [18]

      JIANG Guang-shen, HU Yun-feng, CAI Jun. Research of Cu-ZnO catalysts for sec-butanol dehydrogenation to methyl ethyl ketone[J]. Chem Ind Eng Prog, 2013,32(2):352-358.  

    19. [19]

      CHOI Y, FUTAGAMI K, FUJITANI T. The role of ZnO in Cu/ZnO methanol synthesis catalysts morphology effect or active site model[J]. Appl Catal A:Gen, 2001,208(1/2):163-167.

    20. [20]

      PARK S W, JOO O S, JUNG K D. Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process[J]. Appl Catal A:Gen, 2001,211(1):81-90. doi: 10.1016/S0926-860X(00)00840-1

    21. [21]

      PEI T, LIU L, XU L. A novel glass fiber catalyst for the catalytic combustion of ethyl acetate[J]. Catal Commun, 2015,74:19-23.  

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    7. [7]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    18. [18]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    20. [20]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(12)
  • Abstract views(1734)
  • HTML views(786)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return