Citation: ZHAO Chuang, WU Yang, WANG Da-qian, YANG Hai-ping, ZHANG Shi-hong, CHEN Han-ping. Study on high temperature pyrolysis process and sulfur transformation property of high sulfur petroleum coke[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 683-688. shu

Study on high temperature pyrolysis process and sulfur transformation property of high sulfur petroleum coke

  • Corresponding author: YANG Hai-ping, yhping2002@163.com
  • Received Date: 3 April 2020
    Revised Date: 27 May 2020

    Fund Project: the National Key Research and Development Project of China 2017YFB0602701-02The project was supported by the National Key Research and Development Project of China (2017YFB0602701-02)

Figures(7)

  • In order to understand the pyrolysis process and sulfur transformation property of high sulfur petroleum coke at high temperature, the pyrolysis experiment of Qingdao high sulfur petroleum coke at high temperature (900-1500℃) was carried out in a high temperature fixed bed. The release rule of pyrolysis gas and the evolution of physical pore structure and chemical characteristics of coke during pyrolysis were investigated. At the same time, the content and existing mode of sulfur in the samples before and after pyrolysis were studied. The results show that with the increase in pyrolysis temperature, the content of H2 in the pyrolysis gas of petroleum coke increases gradually; the content of CO changes little; while the content of CH4 and CO2 decreases gradually. Moreover, as the pyrolysis temperature is increased, the specific surface area and average porosity of pyrolysis coke increase; the surface morphology of particles is less affected; the content of amorphous carbon in petroleum coke reduces; and the order and graphitization degree of microcrystalline structure increase gradually. However, with the increase in pyrolysis temperature, the gasification activity of pyrolysis coke is first decreased and then increased, with the minimum value around 1100℃. It is found that the sulfur release rate in high sulfur petroleum coke pyrolysis at 1500℃ reaches 81.34%, and only a small amount of organic sulfur in the form of mercaptans and thiophene rings is retained in solid.
  • 加载中
    1. [1]

      QU Zhan-hong, LIU Yong-hang. Analysis and predication of calcined petroleum coke market[J]. Light Metals, 2015(7):5-7.  

    2. [2]

      TRIPATHI N, SINGH R S, HILLS C D. Microbial removal of sulphur from petroleum coke (petcoke)[J]. Fuel, 2019,235:1501-1505. doi: 10.1016/j.fuel.2018.08.072

    3. [3]

      XIAO J, LI F, ZHONG Q F, HUANG J D, WANG B J, ZHANG Y B. Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke[J]. J Anal Appl Pyrolysis, 2015,117:64-71.  

    4. [4]

      ZHONG Q F, MAO Q Y, ZHANG L Y, XIANG J H, XIAO J. Structural features of Qingdao petroleum coke from HRTEM lattice fringes:Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation[J]. Carbon, 2018,129:790-802. doi: 10.1016/j.carbon.2017.12.106

    5. [5]

      EDWARDS L C, NEYREY K J, LOSSIUS L P. A review of coke and anode desulfurization[J]. TMS Light Metals, 2007:895-900.  

    6. [6]

      GUO Hui-qing, FU Qi, WANG Xin-long, LIU Fen-rong, HU Rui-Sheng, ZHANG Hao. Effect of CO2 atmosphere on sulfur release during coal pyrolysis[J]. J Fuel Chem Technol, 2017,45(5):523-528. doi: 10.3969/j.issn.0253-2409.2017.05.002 

    7. [7]

      MILENKOVA K S, BORREGO A G, ALVAREZ D, XIBERTA J, MENENDZE R. Devolatilisation behaviour of petroleum coke under pulverised fuel combustion conditions[J]. Fuel, 2003,82(15):1883-1891.  

    8. [8]

      IRFAN M F, USMAN M R, KUSAKABE K. Coal gasification in CO2 atmosphere and its kinetics since 1948:A brief review[J]. Energy, 2011,36(1):12-40.  

    9. [9]

      LIANG Yong-huang, YOU Wei, ZHANG Wei-xing. The current situation and development trend of clean coal gasification technology in china (Ⅰ)[J]. Chem Fert Ind, 2013,40(6):30-36.  

    10. [10]

      HU Qi-jing, LIU Xin, ZHOU Zhi-jie, YU Guang-suo. Catalytic activity of ferric chloride for high-sulfur petroleum coke-carbon dioxide gasification[J]. Acta Pet Sin (Pet Process Sect), 2012,28(3):463-469. doi: 10.3969/j.issn.1001-8719.2012.03.018

    11. [11]

      GUO Z, FU Z, WAMG S. Sulfur distribution in coke and sulfur removal during pyrolysis[J]. Fuel Process Technol, 2007,88(10):935-941. doi: 10.1016/j.fuproc.2007.05.003

    12. [12]

      YUAN Shuai, CHEN Xue-li, LI Jun, DAI Zheng-hua, ZHOU Zhi-jie, WANG Fu-chen. Formations of solid and gas phase products during rapid pyrolysis of coal[J]. CIESC J, 2011,62(5):204-210.  

    13. [13]

      WU You-qing. Studies on physico-chemical properties of resultant carbons from different pyrolysis processes and catalytic gasification reaction characteristics of petroleum coke[D]. Shanghai: East China University of Science and Technology, 2011. 

    14. [14]

      SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, POSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018

    15. [15]

      LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016,48(7):39-45.  

    16. [16]

      ZHU Ya-ming, ZHAO Xue-fei, GAO Li-juan, CHENG Jun-xia, LV Jun, LAI Shi-quan. Quantitative study of the microcrystal structure on coal based on needle coke with curve-fitted of XRD and Raman spectrum[J]. Spectrosc Spectral Anal, 2017,37(6):1919-1924.  

    17. [17]

      LU L, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000,14(4):869-876. doi: 10.1021/ef990236s

    18. [18]

      WU Y Q, WU S Y, GAO J S. Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke[J]. Process Saf Environ Prot, 2009,87(5):323-330. doi: 10.1016/j.psep.2009.05.001

    19. [19]

      ZHONG Q F, XIAO J, DU H J, YAO Z. Thiophenic sulfur transformation in a carbon anode during the aluminum electrolysis process[J]. Energy Fuels, 2017,31(4):4539-4547. doi: 10.1021/acs.energyfuels.6b03018

    20. [20]

      CHEN Xi-ping, ZHOU Jie-min, LI Wang-xing. Study on desulphurization by calcination of anode petroleum coke[J]. Light Met, 2007:93-96.  

    21. [21]

      YANG Yan-cheng, TAO Xiu-xiang, XU Ning, LUO Lai-qin. Feasibility study on the FTIR characterization of sulfur-containing groups in coal[J]. China Sciencepaper, 2015,10(18):2110-2116. doi: 10.3969/j.issn.2095-2783.2015.18.003

  • 加载中
    1. [1]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    12. [12]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(6)
  • Abstract views(617)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return