Citation: LEI Ming, SUN Cen, WANG Chun-bo. The crystal structure of coal char and the mineral transformation of coal ash during coal conversion under pressurized conditions[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 925-933. shu

The crystal structure of coal char and the mineral transformation of coal ash during coal conversion under pressurized conditions

  • Corresponding author: LEI Ming, ncepu_lm@126.com
  • Received Date: 9 February 2018
    Revised Date: 2 May 2018

    Fund Project: Fundamental Research Funds for the Central Universities 2017MS120The project was supported by Hebei Province Natural Science Foundation (E2016502094) and Fundamental Research Funds for the Central Universities (2017MS120)Hebei Province Natural Science Foundation E2016502094

Figures(8)

  • The influence of pressure (0.1-6 MPa) on the mineral phase of coal char and the carbon crystal structure and the mineral conversion of coal ash were investigated by using the tube furnace at higher temperature and pressure combined with the analysis of X-ray diffractometer (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The results indicate that the mineral phase of coal char is not significantly affected by the pyrolysis pressure; while, the average stacking height or the graphitization degree of coal char increases with increasing the temperature and pressure. With respect to functional groups, the pressure has little effect on the structure of organic functional group. Also, it is found that the pressure has little effect on the main mineral phases of coal ash, but it can affect the relative contents of mineral phases, which is mainly due to the varying of combustion temperatures caused by the transition of the ignition mechanism at different pressures. The effect of temperature on the mineral transformation is more significant than that of pressure.
  • 加载中
    1. [1]

      LI Fan, QIU Jan-rong, ZHANG Ying, ZHENG Chu-guang. Study on behavior of mineral matters in coal burring burning process[J]. J Eng Therm, 1999,20(2):258-260.  

    2. [2]

      YANG H P, CHEN H P, JU F D, YAN R, ZHANG S H. Influence of pressure on coal pyrolysis and char gasification[J]. Energy Fuels, 2007,21(6):3165-3170. doi: 10.1021/ef700254b

    3. [3]

      WANG Xian-hua, XU Jian, YANG Hai-ping, CHEN Han-ping. Influence of pyrolysis pressure on coal char physic-chemical property[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 2011,39(7):123-127.  

    4. [4]

      JING N J, WANG Q H, CHENG L M, LUO Z Y, CEN K F. The sintering behavior of coal ash under pressurized conditions[J]. Fuel, 2013,103:87-93. doi: 10.1016/j.fuel.2011.09.025

    5. [5]

      JING N J, WANG Q H, CHENG L M, LUO Z Y, CEN K F. Effect of temperature and pressure on the mineralogical and fusion characteristics of Jincheng coal ash in simulated combustion and gasification environments[J]. Fuel, 2013,104:647-655. doi: 10.1016/j.fuel.2012.05.040

    6. [6]

      WANG C B, LEI M, YAN W P, WANG S L, JIA L F. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions[J]. Energy Fuels, 2011,25(10):4333-4344. doi: 10.1021/ef200956q

    7. [7]

      MAYORAL M C, IZQUIERDO M T, ANDRÉS J M, RUBIO B. Aluminosilicates transformations in combustion followed by DSC[J]. Thermochim Acta, 2001,373(2):173-180. doi: 10.1016/S0040-6031(01)00459-2

    8. [8]

      ZHAO Song-hai, WEI Li-ying, LIU Song-hui, WANG Lan, GUAN Xue-mao. Effect of high temperature liquid phase on the formed of periclase in clinker[J]. Bull Chin Ceram Soc, 2014,33(7):1599-1603.  

    9. [9]

      GADIOU R, BOUZIDI Y, PRADO G. The devolatilisation of millimetre sized coal particles at high heating rate:the influence of pressure on the structure and reactivity of the char[J]. Fuel, 2002,81(16):2121-2130. doi: 10.1016/S0016-2361(02)00144-8

    10. [10]

      HAN Ke-xin. Mode of occurrence and high-temperature behaviors of mineral matter in coals and their effects on ash fusibility[D]. Hangzhou: ZheJiang University, 2016.

    11. [11]

      LI W, ZHU Y M. Structural characteristics of coal vitrinite during pyrolysis[J]. Energy Fuels, 2014,28(6):3645-3654. doi: 10.1021/ef500300r

    12. [12]

      YEN T F, ERDMAN J G, POLLACK S S. Investigation of the structure of petroleum asphaltenes by X-Ray diffraction[J]. Anal Chem, 1961,33(11):1587-1594. doi: 10.1021/ac60179a039

    13. [13]

      XU Kai, HU Song, SU Sheng, SHUAI Chao, SUN Lu-shi, XU Chao-fen, XIANG Jun. The effect of pyrolysis pressure on char physicochemical structure[J]. J Eng Therm, 2013,34(2):372-375.  

    14. [14]

      LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016,48(07):39-45.  

    15. [15]

      SHEN C D, LI Y. Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures[J]. Fuel, 2008,87(7):1297-1305. doi: 10.1016/j.fuel.2007.07.023

    16. [16]

      LEI Ming, WANG Chun-bo, YAN Wei-ping, WANG Song-ling. Thermogravimetric research on pressurized oxy-fuel combustion of datong bituminous coal[J]. Proc CSEE, 2012,32(5):21-26.  

    17. [17]

      WANG Chun-bo, LEI Ming, YAN Wei-ping, WANG Song-ling. Combustion characteristics of pulverized coal and mineral conversion under pressurized oxy-fuel condition[J]. J Fuel Chem Technol, 2012,40(7):790-794.  

    18. [18]

      GU Cheng-ru. Research on Potash Feldspar Phosphate Rock Comprehensive Utilization Technology[D]. Hefei: Hefei University of Technology, 2014.

    19. [19]

      REN Xue-jiao. Basic study on thermal reaction of gypsum and potash feldspar[D]. Kunming: Kunming University of Science and Technology, 2013.

  • 加载中
    1. [1]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    4. [4]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    5. [5]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    18. [18]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    19. [19]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    20. [20]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

Metrics
  • PDF Downloads(6)
  • Abstract views(475)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return