Citation: ZHAO Xiao-feng, LI Yan-chun, YUAN Ping, WANG Peng-fei, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Effect of seed number of MOR zeolites on the transalkylation reaction and the investigation of the reaction mechanism[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1095-1104. shu

Effect of seed number of MOR zeolites on the transalkylation reaction and the investigation of the reaction mechanism

  • Corresponding author: WANG Hao, wanghao@sxicc.ac.cn
  • Received Date: 27 March 2017
    Revised Date: 18 July 2017

    Fund Project: Shanxi Scholarship Council of China 2014-102The project was supported by the National Natural Science Foundation of China (General Program) (21273263, 21273264), Shanxi Scholarship Council of China (2014-102) and Department of Human Resource and Social Security of Shanxi Provincethe National Natural Science Foundation of China (General Program) 21273264the National Natural Science Foundation of China (General Program) 21273263

Figures(10)

  • The effect of the number of crystal seeds on the physical and chemical properties and catalytic performance of the mordenite (MOR) zeolite was investigated using the transalkylation of toluene and trimethylbenzene as the probe reaction. The results show that the addition of seed crystals in the synthesis process will significantly affect the acidity, specific surface area and pore volume of the catalyst, thus affect the activity and stability of the catalyst. When the addition amount of crystal seeds is 8%, the MOR has the most B acid content, the maximum specific surface area and the pore volume, and the activity and stability of the catalyst are also the best. In addition, the mechanism of the transalkylation reaction of toluene and trimethylbenzene has been studied in detail. The results show that the transalkylation reaction in the MOR molecular sieve channels is carried out by the mechanism of bimolecular intermediates, and the intermediates, confirming the rationality of the mechanism of the bimolecular intermediates and deducing the possible reaction route.
  • 加载中
    1. [1]

      HAMEDI N, IRANSHAHI D, RAHIMPOUR M R, RAEISSI S, RAJAEI H. Development of a detailed reaction network for industrial upgrading of heavy reformates to xylenes using differential evolution technique[J]. J Taiwan Inst Chem E, 2015,48:56-72. doi: 10.1016/j.jtice.2014.10.015

    2. [2]

      YUAN P, WANG H, XUE Y F, LI Y C, WANG K, DONG M, FAN W B, QIN Z F, WANG J G. Catalytic properties of different crystal sizes for ZSM-5 zeolites on the alkylation of benzene with methanol and optimization of the reaction conditions[J]. Acta Phys Chim Sin, 2016,32(7):1775-1784. doi: 10.3866/PKU.WHXB201604141

    3. [3]

      CEJKA J, WICHTERLOVA B. Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites:Active sites, zeolite topology, and reaction mechanisms[J]. Catal Rev, 2002,44(3):375-421. doi: 10.1081/CR-120005741

    4. [4]

      CHEN N Y and DEGNAN T F. Industrial catalytic applications of zeolites[J]. Chem Eng Prog, 1988,84(2):32-41.

    5. [5]

      LEE Y K, PARK S H and RHEE H K. Transalkylation of toluene and 1, 2, 4-trimethylbenzene over large pore zeolites[J]. Catal Today, 1998,44(1/4):223-233.  

    6. [6]

      CHAO K J and LEU L J. Conversion of toluene and trimethylbenzene over NAHY zeolites[J]. Zeolites, 1989,9(3):193-196. doi: 10.1016/0144-2449(89)90025-0

    7. [7]

      KREJČ Í A, AL-KHATTAF S, ALI MA, BEJBLOVÁ M, ČEJKA J. Transalkylation of toluene with trimethylbenzenes over large-pore zeolites[J]. Appl Catal A:Gen, 2010,377(1/2):99-106.  

    8. [8]

      MESHRAM N R, KULKARNI S B and RATNASAMY P. Transalkylation of toluene with C9 aromatic hydrocarbons over ZSM-5 zeolites[J]. J Chem Technol Biot, 1984,34(3A):119-126.

    9. [9]

      ALI SA, AITANI AM, ERCAN C, WANG Y, AL-KHATTAF S. Conversion of heavy reformate into xylenes over mordenite-based catalysts[J]. Chem Eng Res Des, 2011,89(10A):2125-2135.

    10. [10]

      LIU X Y, XIE C X, ZHAO J, PAN H F. Action of crystal seeds in synthetic system of zeolite L[J]. J Univ Petro, 2004, 28(5):103-107. 

    11. [11]

      CHEN Y H, LI C Y, YANG Z H. Study on the synthesis of ZSM-5 molecular sieve by seed crystallization[J]. Pet Process Petroche, 2013,44(11):24-28. doi: 10.3969/j.issn.1005-2399.2013.11.005

    12. [12]

      XIONG Y S, RODEWALD P G, and CHANG C D. On the mechanism of toluene disproportionation in a zeolite environment[J]. J Am Chem Soc, 1995,117(37):9427-9431. doi: 10.1021/ja00142a007

    13. [13]

      BADURAIG A, ODEDAIRO T and AL-KHATTAF S. Disproportionation and methylation of toluene with methanol over zeolite catalysts[J]. Top Catal, 2010,53(19/20):1446-1456.  

    14. [14]

      SERRA J M, GUILLON E, and CORMA A. A rational design of alkyl-aromatics dealkylation-transalkylation catalysts using C(8) and C(9) alkyl-aromatics as reactants[J]. J Catal, 2004,227(2):459-469. doi: 10.1016/j.jcat.2004.08.006

    15. [15]

      SVELLE S, OLSBYE U, LILLERUD KP, KOLBOE S, BJØRGEN M. Diphenylmethane-mediated transmethylation of methylbenzenes over H-zeolites[J]. J Am Chem Soc, 2006,128(17):5618-5619. doi: 10.1021/ja060931w

    16. [16]

      MIN H K, CHIDAMBARAM V, and HONG S B. Diethylated Diphenylethane Species:Main Reaction Intermediates of Ethylbenzene Disproportionation over Large-Pore Zeolites[J]. J Phys Chem C, 2010,114(2):1190-1193. doi: 10.1021/jp9094408

    17. [17]

      LI Yan-chun, WANG Hao, DONG Mei, LI Jun-fen, WANG Guo-fu, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Optimization of reaction conditions in the transalkylation of toluene with 1, 2, 4-trimethylbenzene catalyzed by beta zeolite and the investigation of its reaction mechanism[J]. Acta Phys Chim Sin, 2016,74(6):529-537. doi: 10.6023/A16020077

    18. [18]

      LI Yan-chun, WANG Hao, DONG Mei, LI Jun-Fen, WANG Guo-fu, QIN Zhang-Feng, FAN Wei-bin, WANG Jian-guo. Effect of zeolite pore structure on the diffusion and catalytic behaviors in the transalkylation of toluene with 1, 2, 4-trimethylbenzene[J]. RSC Adv., 2015,5(81):66301-66310.. doi: 10.1039/C5RA09236A

    19. [19]

      WALTON K S and SNURR R Q. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks[J]. J Am Chem Soc, 2007,129(27):8552-8556. doi: 10.1021/ja071174k

    20. [20]

      DUMITRIUE , GUIMON C, HULEA V, LUTIC D, FECHETE I. Transalkylation of toluene with trimethylbenzenes catalyzed by various AFI catalysts[J]. Appl Catal A:Gen, 2002,237(1/2):211-221.

    21. [21]

      KIM G J, AHN W S. Direct synthesis and characterization of high-SiO2-content mordenites[J]. Zeolites, 1991,11(7):745-750. doi: 10.1016/S0144-2449(05)80183-6

    22. [22]

      BYUN Y, JO D, DONG N S, HONG S B. Theoretical investigation of the isomerization and disproportionation of m-xylene over medium-pore zeolites with different framework topologies[J]. ACS Catalysis, 2014,4(6):1764-1776. doi: 10.1021/cs500186y

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(2)
  • Abstract views(1400)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return