Citation: Wang Zhuqing, Tian Fenyi, Zhang Yongqi, Wen Mingjie. Hydrogen Abstraction Reaction Mechanism of HO2 with HONO and Its Isomers[J]. Chemistry, ;2019, 82(7): 649-654. shu

Hydrogen Abstraction Reaction Mechanism of HO2 with HONO and Its Isomers

  • Corresponding author: Wang Zhuqing, wangzq128@163.com
  • Received Date: 20 February 2019
    Accepted Date: 26 April 2019

Figures(2)

  • The mechanism for the reaction of HO2 with HONO and its isomers was investigated at the CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(3d, 2p) level. The results showed that HONO has three different isomers, labeled as cis-HONO, trans-HONO and HNO2, and HNO2 is the most stable in them. The energy barrier of HO2+HNO2 is lower by 8.2~13.8 kcal·mol-1 than that of the other two reactions of cis-HONO+HO2 and trans-HONO+HO2. The rate constants of these three reactions were calculated by the traditional transition state theory with Wigner correction in the temperature range of 240~425 K. The calculated results showed that the rate constant of HO2+HNO2 reaction is larger by 4~9 orders of magnitude than those of cis-HONO+HO2 and trans-HONO+HO2, indicating that the total rate constants for the reaction of HO2 with HONO and its isomers mainly lie on the contribution of HO2+HNO2 reaction.
  • 加载中
    1. [1]

       

    2. [2]

      T J Wallington, P Dagaut, M J Kurylo. Chem. Rev., 1992, 92(4):667~710. 

    3. [3]

      R Zhu, M C Lin. PhysChemComm, 2001, 4(23):106~111. 

    4. [4]

      R S Zhu, M C Lin. PhysChemComm, 2001, 4(25):127~132. 

    5. [5]

       

    6. [6]

      Y Li, J S Francisco. J. Chem. Phys., 2001, 114(1):211~214. 

    7. [7]

      Y Tang, G S Tyndall, J J Orlando. J. Phys. Chem. A, 2009, 114(1):369~378. 

    8. [8]

      J Kleffmann. ChemPhysChem, 2007, 8(8):1137~1144. 

    9. [9]

      X Li, T Brauers, R Häseler et al. Atmos. Chem. Phys., 2012, 12(3):1497~1513. 

    10. [10]

      E T Gall, R J Griffin, A L Steiner et al. Atmos. Environ., 2016, 127:272~282. 

    11. [11]

      D Cazoir, M Brigante, R Ammar et al. J. Photochem. Photobiol. A, 2014, 273:23~28. 

    12. [12]

       

    13. [13]

      D E Damschen, L R Martin. Atmos. Environ., 1967, 1983, 17(10):2005~2011. 

    14. [14]

      X Lu, J Park, M C Lin. J. Phys. Chem. A, 2000, 104(38):8730~8738. 

    15. [15]

      T J Wallington, S M Japar. J. Atmos. Chem., 1989, 9(4):399~409. 

    16. [16]

      X Lu, R N Musin, M C Lin. J. Phys. Chem. A, 2000, 104(21):5141~5148. 

    17. [17]

      Z Latajka, Z Mielke, A Olbert-Majkut et al. Phys. Chem. Chem. Phys., 1999, 1(10):2441~2448. 

    18. [18]

       

    19. [19]

      J Ma, Y Liu, C Han et al. J. Environ. Sci.-China, 2013, 25(2):326~334. 

    20. [20]

      Y S Lee, S A Kucharski, R J Bartlett. J. Chem. Phys., 1984, 81:5906~5912. 

    21. [21]

      J A Pople, R Krishnan, H B Schlegel et al. Int. J. Quantum. Chem., 1978, 14:545~560. 

    22. [22]

      J A Pople, M Head-Gordon, K Raghavachari. J. Chem. Phys., 1989, 90:4635~4636. 

    23. [23]

      M Walker, A J A Harvey, A Sen et al. J. Phys. Chem. A, 2013, 117:12590~12600. 

    24. [24]

      D Josa, J Rodríguez-Otero, E M Cabaleiro-Lago et al. Chem. Phys. Lett., 2013, 557:170~175. 

    25. [25]

      C Gonzalez, H B Schlegel. J. Chem. Phys., 1989, 90(4):2154~2161. 

    26. [26]

       

    27. [27]

      M J Frisch, G W Trucks, H B Schlegel et al. Gaussian 09, Revision A.01. Gaussian, Gaussian, Inc., Wallingford, Conn, USA, 2009.

    28. [28]

      S W Zhang, T N Truong. VKLab version 1.0, University of Utah:2001.

    29. [29]

      B C Garrett, D G Truhlar. J. Chem. Phys., 1979, 70(4):1593~1598. 

    30. [30]

      B C Garrett, D G Truhlar. J. Am. Chem. Soc., 1979, 101(16):4534~4548. 

    31. [31]

      B C Garrett, D G Truhlar, R S Grev et al. J. Phys. Chem., 1980, 84(13):1730~1748. 

    32. [32]

       

    33. [33]

       

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    8. [8]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    18. [18]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(9)
  • Abstract views(811)
  • HTML views(216)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return