Citation: ZHAO Tian-tian, ZHANG Lu, ZENG Hao, LIN Rui. Influence of metal precursor on the performance of PtCu/C catalyst for proton exchange membrane fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 613-620. shu

Influence of metal precursor on the performance of PtCu/C catalyst for proton exchange membrane fuel cell

  • Corresponding author: LIN Rui, ruilin@tongji.edu.cn
  • Received Date: 7 December 2015
    Revised Date: 24 February 2016

    Fund Project: the National Natural Science Foundation of China 2127199

Figures(8)

  • A series of PtCu/C catalysts (with a CuPd loading of 20%) were prepared by ethylene glycol (EG) reduction method with different metal precursors, viz., CuSO4/CuCl2 and K2PtCl4/H2PtCl6. The morphology, structure and electrochemical performance of as-prepared PtCu/C catalysts were characterized by high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV) and liner sweep voltammetry (LSV) techniques. The results indicate that the PtCu/C catalyst prepared with CuSO4 and K2PtCl4 as precursors exhibit highest electrochemical performance, in which metal particles with a mean size of 2.3 nm are uniformly dispersed on the carbon support. Such a PtCu/C catalyst has an electro-chemical surface area (ECSA) of 73.0 m2/gPt and a mass activity (MA) of 126 mA/mgPt, both higher than the commercial Pt/C catalyst.
  • 加载中
    1. [1]

      WANG Y, CHEN K S, MISHLER J, CHO S C, ADROHER X C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Appl Energy, 2011,88(4):981-1007. doi: 10.1016/j.apenergy.2010.09.030

    2. [2]

      GASTEIGER H A, MARKOVI N M. Just a dream-or future reality[J]. Science, 2009,324(5923):48-49. doi: 10.1126/science.1172083

    3. [3]

      BING Y, LIU H, LEI Z, GHOSH D, ZHANG J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Chem Soc Rev, 2010,41(42):2184-2202.  

    4. [4]

      MAZUMDER V, LEE Y, SUN S. Recent development of active nanoparticle catalysts for fuel cell reactions[J]. Adv Funct Mater, 2010,20(8):1224-1231. doi: 10.1002/adfm.v20:8

    5. [5]

      JEAN-PHILIPPE B, ABRAHAMYAN L G, GÉRARD F C A, NICOLE R, COHEN E A. Low-platinum and platinum free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy Environ Sci, 2011,4(4):1238-1254. doi: 10.1039/c0ee00601g

    6. [6]

      LIU Wei-feng, TANG Qian, YI Bao-lian, ZHANG Hua-min. Research progress on cathode electrocatalyst for fuel cells[J]. Chin J Power Sources, 2002,26(6):457-461.

    7. [7]

      SHAOJUN G, SEN Z, SHOUHENG S. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angew Chem Int Ed, 2013,52(33):8526-8544. doi: 10.1002/anie.201207186

    8. [8]

      ZHANG Jie, TANG Shui-hua, LIAO Long-yu, YU Wei-fei. Progress in non-platinum catalysts with applications in low temperature fuel cells[J]. Chin J Catal, 2013,34(6):1051-1065. doi: 10.1016/S1872-2067(12)60588-9

    9. [9]

      JAOUEN F, PROIETTI E, LEFÉVRE M, CHENITZ R, DODELET J P, WU G. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J]. Energy Environ Sci, 2010,4(1):114-130.  

    10. [10]

      ZHANG Hai-yan, CAO Chun-hui, ZHAO Jian, LIN Rui, MA Jian-xin. Recent development of Pt-based core-shell structured electrocatalysts in fuel cells[J]. Chin J Catal, 2013,33(2):222-229.  

    11. [11]

      CAO Chun-hui, LIN Rui, ZHAO Tian-tian, HUANG Zhen, MA Jian-xin. Preparation and characterization of core-shell Co@Pt/C catalyst for fuel cell[J]. Acta Phys-Chim Sin, 2013,29(1):95-101.  

    12. [12]

      LONG N V, YANG Y, CAO M T, MINH N V, CAO Y, NOGAMI M. The development of mixture, alloy, and core-shell nano-catalysts with the support nano-materials for energy conversion in low temperature fuel cells[J]. Nano Energy, 2013,2(5):636-676. doi: 10.1016/j.nanoen.2013.06.001

    13. [13]

      CHEN Y, YANG F, DAI Y, WANG W, CHEN S. Ni@Pt core-shell nanoparticles: Synthesis, structural and electrochemical properties[J]. J Phys Chem C, 2008,112(5):1645-1649. doi: 10.1021/jp709886y

    14. [14]

      STAMENKOVIC V R, FOWLER B, MUN B S, WANG G, ROSS P N, LUCAS C A. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability[J]. Science, 2007,315(5811):493-497. doi: 10.1126/science.1135941

    15. [15]

      MANI P, SRIVASTAVA R, STRASSER P. Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes[J]. J Phys Chem C, 2008,112(7):2770-2778. doi: 10.1021/jp0776412

    16. [16]

      ANTOLINI E, SALGADO J R C, GIZ M J, GONZALEZ E R. Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells[J]. Int J Hydrogen Energy, 2005,30(11):1213-1220. doi: 10.1016/j.ijhydene.2005.05.001

    17. [17]

      YU Shu-ping, LOU Qun, LIU Run-ting, HAN Ke-fei, WANG Zhong-ming, ZHU Hong. Synthesis and electrocatalytic performance of Cu@Pt/MWCNTs-MnO2 electrocatalyst[J]. Acta Chim Sin, 2012,70(22):2359-2364. doi: 10.6023/A12050234

    18. [18]

      NEERGAT M, RAHUL R. Unsupported Cu-Pt core-shell nanoparticles: Oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content[J]. J Electrochem Soc, 2012,159(7):F234-F241. doi: 10.1149/2.039207jes

    19. [19]

      YANG H, DAI L, XU D, FANG J, ZOU S. Electrooxidation of methanol and formic acid on PtCu nanoparticles[J]. Electrochim Acta, 2010,55(27):8000-8004. doi: 10.1016/j.electacta.2010.03.026

    20. [20]

      DHAVALE V M, UNNI S M, KAGALWALA H N, PILLAI V K, KURUNGOT S. Ex-situ dispersion of core-shell nanoparticles of Cu-Pt on an in situ modified carbon surface and their enhanced electrocatalytic activities[J]. Chem Commun, 2011,47(13):3951-3953. doi: 10.1039/c0cc05645f

    21. [21]

      MINTSOULI I, GEORGIEVA J, ARMYANOV S, VALOVA E, AVDEEV G, HUBIN A. Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors[J]. Appl Catal B: Environ, 2013,136-137(21):160-167.  

    22. [22]

      ROMÁN-MARTÍNEZ M C, CAZORLA-AMORÓS D, LINARES-SOLANO A, LECEA S M D, YAMASHITA H, ANPO M. Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor[J]. Carbon, 1995,33(1):3-13. doi: 10.1016/0008-6223(94)00096-I

    23. [23]

      DU Chun-yu, CHENG Xin-qun, SHI Peng-fei, YIN Ge-ping. Effect of precursors on carbon supported platinum nano-catalyst[J]. Battery Bimon, 2006,36(3):173-174.  

    24. [24]

      WANG Zhen-bo, YIN Ge-ping, SHI Peng-fei. The Influence of three groups of Pt-Ru/C catalyst's precursors on its performance for direct methanol fuel cell[J]. Acta Phys-Chim Sin, 2005,21(10):1156-1160.  

    25. [25]

      OH H S, OH J G, HONG Y G, KIM H. Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications[J]. Electrochim Acta, 2007,52(25):7278-7285. doi: 10.1016/j.electacta.2007.05.080

    26. [26]

      BOCK C, PAQUET C, COUILLARD M, MOTTON G A, MACDOUGALL B R. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism[J]. J Am Chem Soc, 2004,126(25):8028-37. doi: 10.1021/ja0495819

    27. [27]

      FUJISHIMA A. Electrochemical Test Method[M]. Beijing: Peking University Press, 1995.

    28. [28]

      AN Xiao-sha, CHEN De-jun, ZHOU Zhi-you, WANG Qiang, FAN You-jun, SUN Shi-gang. Rare earth Eu doped PtRu/C catalysts and their properties for methanol electrooxidation[J]. Acta Phys-Chim Sin, 2010,26(5):1207-1213.  

    29. [29]

      TSENG C J, LO S T, LO S C, CHU P P. Characterization of Pt-Cu binary catalysts for oxygen reduction for fuel cell applications[J]. Mater Chem Phys, 2006,100(2/3):385-390.  

    30. [30]

      SHIFLETT W K, DUMESIC J A. Ammonia synthesis as a catalytic probe of supported ruthenium catalysts: The role of the support and the effect of chlorine[J]. Ind Eng Chem Fundam, 1981,20(3):246-250. doi: 10.1021/i100003a011

    31. [31]

      WANG Gui-ying, LIAN Hong-lei, ZHANG Wen-xiang, JIANG Da-zhen, WU Tong-hao. Effect of Cl on the performance of CO oxidation over Au/ZnO catalysts[J]. J Fuel Chem Technol, 2001,29(Suppl.):116-118.  

    32. [32]

      KRISTIAN N, YU Y, LEE J M, LIU X, XIN W. Synthesis and characterization of Cocore-Ptshell electrocatalyst prepared by spontaneous replacement reaction for oxygen reduction reaction[J]. Electrochim Acta, 2010,56(2):1000-1007. doi: 10.1016/j.electacta.2010.09.073

    33. [33]

      SALGADO J R C, ANTOLINI E, GONZALEZ E R. Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction[J]. J Phys Chem B, 2004,108(46):17767-17774. doi: 10.1021/jp0486649

    34. [34]

      SALGADO J R C, ANTOLINI E, GONZALEZ E R. Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: the effect on the performance of the catalyst[J]. J Power Sources, 2004,138(138):56-60.

    35. [35]

      WANG Ai-li, SUN Yu, LIANG Zhi-xiu, CHEN Sheng-li. Particle size effects of Pt nanocatalyst in the catalyst layer of proton exchange membrane fuel cell[J]. Acta Chim Sin, 2009,67(22):2554-2558.  

  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

Metrics
  • PDF Downloads(32)
  • Abstract views(7150)
  • HTML views(1604)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return