Citation: ZENG Peng-hui, ZHANG Li-li, GUO Xiao-zhong, LI Ming-fu, GUO Qiao-xia, NIU Chao, SHEN Bao-jian. Catalytic performances of Al-ITQ-13 zeolites with different SiO2/Al2O3 ratios in the conversion of methanol to propene[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1349-1355. shu

Catalytic performances of Al-ITQ-13 zeolites with different SiO2/Al2O3 ratios in the conversion of methanol to propene

  • Corresponding author: SHEN Bao-jian, baojian@cup.edu.cn
  • Received Date: 3 May 2017
    Revised Date: 13 June 2017

    Fund Project: the National Natural Science Foundation of China U1462202The project was supported by the National Natural Science Foundation of China (U1462202), the Science Foundation of China University of Petroleum-Beijing (2462015YQ0309)the Science Foundation of China University of Petroleum-Beijing 2462015YQ0309

Figures(6)

  • Al-ITQ-13 zeolites with different SiO2/Al2O3 molar ratios were synthesized by using seeds in the gel and characterized by XRD, SEM, N2 physisorption, MAS NMR and NH3-TPD. The effect of SiO2/Al2O3 molar ratio on the catalytic performance of Al-ITQ-13 in the conversion of methanol to propene (MTP) was investigated in a fixed-bed micro-reactor. The results showed that the Al-ITQ-13 zeolites with different SiO2/Al2O3 molar ratios are similar in their textural properties; however, the amount and strength of acid sites decrease with the increase of SiO2/Al2O3 molar ratio. Moreover, the SiO2/Al2O3 molar ratio has a significant influence on the catalytic behavior of Al-ITQ-13 in MTP. As the hydrogen transfer and aromatization reactions were suppressed over the Al-ITQ-13 zeolite with high SiO2/Al2O3 molar ratio, with the increase of SiO2/Al2O3 molar ratio, the selectivity to propene and butene is increased at the expense of the selectivity to propene; that is, with the increase of SiO2/Al2O3 molar ratio from 137 to 309, the selectivity to propene is increased from 46.04% to 55.52% and meanwhile, the propene/ethene ratio is increased from 3.39 to 6.57.
  • 加载中
    1. [1]

      ZHOU Huo-sheng. Purchasing strategy and scheme of propylene in 2012[J]. Yunnan Chem Technol, 2012,39(2):60-64.  

    2. [2]

      HUANG Hui-wei, MENG Xiao-jing, CHEN Chen, ZHANG Min-xiu, LI Chun-yi, CUI Qiu-kai. Study on SiO2/Al2O3 molar ratio of HZSM-5 catalyst in methanol to propylene reaction performance[J]. Petrochem Technol Appl, 2016,34(4):284-289.  

    3. [3]

      WEI Ru-chao, LI Chun-yi, YANG Chao-he, SHAN Hong-hong. Characterization and catalytic performance of (NH4)2SiF6-modified nanosized HZSM-5 catalyst for conversion of methanol to olefins[J]. Ind Catal, 2011,19(3):40-44.  

    4. [4]

      GUO Qiang-sheng, MAO Dong-sen, LAO Yan-ping, LU Guan-zhong. The effect of fluorine modification on catalytic performance of nanosized HZSM-5 zeolite for conversion of methanol to propene[J]. Chin J Catal, 2009,30(12):1248-1254. doi: 10.3321/j.issn:0253-9837.2009.12.012

    5. [5]

      BOIX T, PUCHE M, CAMBLOR M, CORMA A. Synthetic porous crystalline material ITQ-13, its synthesis and use:US6471941[P]. 2002-10-29. 

    6. [6]

      CORMA A, PUCHE M, REY F, SANKAR G, TEAT S J. A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9-and 10-rings[J]. Angew Chem Int Ed, 2003,42:1156-1159. doi: 10.1002/anie.200390304

    7. [7]

      SKISTAD W, TEKETEL S, BLEKEN F L, BEATO P, BORDIGA S, NILSEN M H, OLSBYE U, SVELLE S, LILLERUD K P. Methanol conversion to hydrocarbons (MTH) over H-ITQ-13(ITH) zeolite[J]. Top Catal, 2014,57:143-158. doi: 10.1007/s11244-013-0170-7

    8. [8]

      CASTANEDA R, CORMA A, FORNES V, MARTINEZ-TRIGUERO J, VALENCIA S. Direct synthesis of a 9×10 member ring zeolite (Al-ITQ-13):A highly shape-selective catalyst for catalytic cracking[J]. J Catal, 2006,238:79-87. doi: 10.1016/j.jcat.2005.11.038

    9. [9]

      SASTRE G, PULIDO A, CASTANEDA R, CORMA A. Effect of the germanium incorporation in the synthesis of EU-1, ITQ-13, ITQ-22, and ITQ-24 zeolites[J]. J Phys Chem B, 2004,108:8830-8835. doi: 10.1021/jp0378438

    10. [10]

      LLOPIS F, SASTRE G, CORMA A. Isomerization and disproportionation of m-xylene in a zeolite with 9-and 10-membered ring pores:Molecular dynamics and catalytic studies[J]. J Catal, 2006,242:195-206. doi: 10.1016/j.jcat.2006.05.034

    11. [11]

      CORMA A, VALENCIA. Catalytic cracking process:US 6709572[P]. 2004-3-23. 

    12. [12]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141:347-354. doi: 10.1006/jcat.1993.1145

    13. [13]

      ZENG P H, LIANG Y, JI S F, SHEN B J, LIU H H, WANG B J, ZHAO H J, LI M F. Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking[J]. J Energy Chem, 2014,23:193-200. doi: 10.1016/S2095-4956(14)60135-2

    14. [14]

      ZENG Peng-hui, JI Sheng-fu, LIANG Yun, SHEN Bao-jian, FU Li-na, ZHAO Xiao-zheng. Alkali modification of Al-ITQ-13 zeolite and its performances for catalytic cracking[J]. Petrochem Technol, 2014,43(4):405-411.  

    15. [15]

      ZENG P H, GUO X Z, ZHU X C, GUO Q X, WANG Y D, REN S Y, SHEN B J. On the synthesis and catalytic cracking properties of Al-ITQ-13 zeolites[J]. Microporous Mesoporous Mater, 2017,246:186-192. doi: 10.1016/j.micromeso.2017.03.033

    16. [16]

      SKISTAD W, TEKETEL S, BLEKEN F L, BEATO P, BORDIGA S, NILSEN M H, OLSBYE U, SVELLE S, LILLERUD K P. Methanol conversion to hydrocarbons (MTH) over H-ITQ-13(ITH) zeolite[J]. Top Catal, 2014,57:143-158. doi: 10.1007/s11244-013-0170-7

    17. [17]

      SASTRE G, PULIDO A, CASTANEDA R, CORORM A. Effect of the germanium incorporation in the synthesis of EU-1, ITQ-13, ITQ-22, and ITQ-24 zeolites[J]. J Phys Chem B, 2004,108(26):8830-8835. doi: 10.1021/jp0378438

    18. [18]

      CORMA A, REY F, VALENCIA S. A zeolite with interconnected 8-, 10-and 12-ring pores and its unique catalytic selectivity[J]. Nat Mater, 2003,2:493-497. doi: 10.1038/nmat921

    19. [19]

      JIAO Yong-dong, ZHU Bin, LIN Ming, ZHU Hua-yuan. Synthesis, characterization and catalytic light olefin aromatization performance of zeolite ITQ-13[J]. Acta Pet Sin (Pet Process Sect), 2006(Supplement):184-187.  

    20. [20]

      XU G, ZHU X, LIU S, XIE S, XU L. Synthesis of pure silica ITQ-13 zeolite using fumed silica as silica source[J]. Microporous Mesoporous Mater, 2010,129:278-284. doi: 10.1016/j.micromeso.2009.10.005

    21. [21]

      XU C, Guan GUAN J., WU S, KAN Q. Effect of silica source on the hydrothermal synthesis of ITQ-13 zeolite[J]. Acta Phys Chim Sin, 2009,25:2275-2278.  

    22. [22]

      REN X, LIU J, LI Y, YU J, XU R. Hydrothermal synthesis of an ITH-type germanosilicate zeolite in a non-concentrated gel system[J]. J Porous Mater, 2013,20:975-981. doi: 10.1007/s10934-013-9676-4

    23. [23]

      WEI Ru-chao. Synthesis, characterization of ZSM-5 zeolite and studies on its catalytic performance for the reaction of MTO[D]. Qingdao:China University of Petroleum (Huadong), 2011. 

    24. [24]

      ZHAO T S, TAKEMOTO T, YONEYAMA Y. Selective conversion of dimethyl ether to propylene and light olefins over modified H-ZSM-5[J]. Chem Lett, 2005,34(7):970-971. doi: 10.1246/cl.2005.970

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    19. [19]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    20. [20]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

Metrics
  • PDF Downloads(0)
  • Abstract views(775)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return