Citation: Li Mingzhu, Na Ping, Qiao Bin. Application of Model and Statistics in Liquid Chromatography Development[J]. Chemistry, ;2019, 82(12): 1073-1078. shu

Application of Model and Statistics in Liquid Chromatography Development

  • Corresponding author: Qiao Bin, jobin@tju.edu.cn
  • Received Date: 5 June 2019
    Accepted Date: 30 September 2019

  • High performance liquid chromatography (HPLC) is the most commonly used technique in separation and analysis at present. The classification and selection of columns are the important parts of analytical method development and validation. In this paper, the recent progresses in the application of mathematical models and statistical method in chromatographic development are reviewed. The improvement and application of HPLC column characterization databases and quantitative structure-retention relationship model are summarized. The progresses in computer technology used in HPLC development, the HPLC column classification system applied in column selection and ultrahigh pressure liquid chromatography column characterization model are also introduced. In addition, the future prospects for application of computer technology combined with molecular simulation and artificial neural network in HPLC development are expected.
  • 加载中
    1. [1]

    2. [2]

       

    3. [3]

       

    4. [4]

       

    5. [5]

      E M Borges. Anal. Chim. Acta, 2014, 807(5): 143~152.

    6. [6]

      Y Huang. Chem. Biol. Drug Design, 2019, 93(1): 29~37. 

    7. [7]

      P W Carr. J. Chromatogr. A, 2015, 1395(4): 57~64. 

    8. [8]

      J W Dolan. LC GC North Am., 2017, 35(9): 660~667.

    9. [9]

      F Andrić, K Héberger. J. Chromatogr. A, 2017, 1488: 45~56. 

    10. [10]

      J Wang. J. Chromatogr. A, 2014, 1361: 153~161. 

    11. [11]

      L C Sander. J. Sep. Sci., 2003, 26(4): 283~294. 

    12. [12]

      C Chamseddin, I Molnár, T Jira. J. Chromatogr. A, 2013, 1297: 146~156. 

    13. [13]

      P Žuvela. Chem. Rev., 2019, 119(6): 3674~3729. 

    14. [14]

      C F Poole. J. Chromatogr. B, 2018, 1092: 207~219. 

    15. [15]

      E Lesellier, C West. J. Chromatogr. A, 2007, 1158(1/2): 329~360. 

    16. [16]

      L R Snyder, J W Dolan, P W Carr. J. Chromatogr. A, 2004, 1060(1/2): 77~116. 

    17. [17]

      D H Marchand, L R Snyder, J W Dolan. J. Chromatogr. A, 2008, 1191(1/2): 2~20. 

    18. [18]

      C F Poole. J. Chromatogr. A, 2019, 1600: 112~126. 

    19. [19]

      M R Euerby, P Petersson. J. Chromatogr. A, 2003, 994(1/2): 13~36.

    20. [20]

      M R Euerby, P Petersson, W Campbell et al. J. Chromatogr. A, 2007, 1154(1/2): 138~151.

    21. [21]

      M R Euerby, M James, B Axelsson et al. J. Sep. Sci., 2012, 35(19): 2592~2598. 

    22. [22]

      K Kassam, D Tsarev, M Euerby. J. Chromatogr. B, 2014, 63:14~20.

    23. [23]

      E Haghedooren, A Kerner, J Hoogmartens et al. J. Pharm. Biomed. Anal., 2007, 44(3): 634~639. 

    24. [24]

    25. [25]

      T Bączek, R Kaliszan, P Jandera et al. J. Chromatogr. A, 2005, 1075(1/2): 109~115.

    26. [26]

      R I J Amos, R H Paul, S Roman et al. Trends Anal. Chem., 2018, 105: 352~359. 

    27. [27]

      Y Wen, M Talebi, R Szucs et al. J. Chromatogr. A, 2018, 1541: 1~11. 

    28. [28]

      E Tyteca, M Talebi, R Amos et al. J. Chromatogr. A, 2017, 1486: 50~58. 

    29. [29]

      A D McEachran, K Mansouri, S Newton et al. Talanta, 2018, 182: 371~379. 

    30. [30]

      M Goodarzi, R Jensen, Y V Heyden. J. Chromatogr. B, 2012, 910: 84~94. 

    31. [31]

      S H Park, M Tslebi, R I J Amos et al. J. Chromatogr. A, 2017, 1523: 173~182. 

    32. [32]

      L P Barron, G L McEneff. Talanta, 2016, 147: 261~270. 

    33. [33]

      K Héberger. J. Chromatogr. A, 2007, 1158(1/2): 273~305.

    34. [34]

      RAalizadeh, N S Thomaidis, A A Bletsou et al. J. Chem. Inform. Model., 2016, 56(7): 1384~1398. 

    35. [35]

       

    36. [36]

       

    37. [37]

       

    38. [38]

      A M Al-Fakih, Z Y Algamal, M H Lee et al. SAR QSAR Environ. Res., 2017, 28(8): 691~703. 

    39. [39]

      X Zhang, J Li, C Wang et al. J. Pharm. Biomed. Anal., 2017, 145: 262~272. 

    40. [40]

      G M Randazzo, D Tonoli, S Hambye et al. Anal. Chim. Acta, 2016, 916: 8~16. 

    41. [41]

      P Žuvela, K Macur, T Baczek et al. J. Pharm. Biomed. Anal., 2016, 127: 94~100. 

    42. [42]

      A Plenis, I Olędzka, T Bęczek. J. Pharm. Biomed. Anal., 2013, 78/79: 161~169. 

    43. [43]

      J Szulfer, A Plenis, T Bączek. J. Chromatogr. A, 2012, 1229: 198~207. 

    44. [44]

      P Žuvela, A Plenis, T Baczek et al. J. Chromatogr. A, 2015, 1420: 74~82. 

    45. [45]

      A Plenis, N Rekowska, T Bączek. Int. J. Mol. Sci., 2016, 17(136): 1~12.

    46. [46]

      W Q Zhang, Q X Hu, X Zhang et al. J. Chromatogr. A, 2014, 1323: 87~96. 

    47. [47]

      X Zhang, C Hu. J. Pharm. Biomed. Anal., 2017, 136: 162~169. 

    48. [48]

      R K Lindsey, B L Eggimann, D R Stoll et al. J. Chromatogr. A, 2019, 2589(29): 47~55.

    49. [49]

       

    50. [50]

      S Fekete, K Ganzler. J. Pharm. Biomed. Anal., 2011, 54(3): 482~490. 

    51. [51]

      S Fekete, D Guillarme. J. Chromatogr. A, 2013, 1308: 104~113. 

    52. [52]

      C Galea, D Mangelings, Y V Heyden. Anal. Chim. Acta, 2015, 886: 1~15. 

    53. [53]

      A R Johnson, C M Johnson, D R Stoll. J. Chromatogr. A, 2012, 1249: 62~82. 

    54. [54]

      K Kollár-Hunek, K Héberger. Chemomet. Intell. Lab., 2013, 127: 139~146. 

    55. [55]

      A C Dubbelman, F Cuyckens, L Dillen et al. J. Chromatogr. A, 2014, 1374: 122~133. 

    56. [56]

      JSzulfer, A Plenis, T Bączek. J. Chromatogr. A, 2014, 1346: 69~77. 

    57. [57]

      M R Euerby, M James, P Petersson. J. Chromatogr. A, 2012, 1228: 165~174. 

    58. [58]

      F Falchi, S M Bertozzi, G Ottonello. Anal. Chem., 2016, 88(19): 9510~9517. 

    59. [59]

    60. [60]

      M A Korany, H Mahgoub, O T Fahmy et al. J. Adv. Res., 2012, 3(1): 53~63. 

    61. [61]

       

    62. [62]

      A A D'Archivio, A Giannitto, M A Maggi et al. Anal. Chim. Acta, 2012, 717: 52~60. 

  • 加载中
    1. [1]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    2. [2]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    3. [3]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    4. [4]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    7. [7]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    14. [14]

      Haifeng Liu Yong Xiao Teng Yuan Bimin Lin Yizhen Wang Hui Zeng . Exploration of Safety Facility Configuration in University Chemical Depot. University Chemistry, 2024, 39(10): 182-188. doi: 10.3866/PKU.DXHX202401036

    15. [15]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    16. [16]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    19. [19]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(12)
  • Abstract views(489)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return