Citation: Chen Tao, Peng Lincai. Advances in the Synthesis of Novel Biofuel 5-Ethoxymethylfurfural[J]. Chemistry, ;2018, 81(1): 45-51. shu

Advances in the Synthesis of Novel Biofuel 5-Ethoxymethylfurfural

  • Corresponding author: Peng Lincai, penglincai@kmust.edu.cn
  • Received Date: 3 July 2017
    Accepted Date: 26 October 2017

Figures(2)

  • 5-Ethoxymethylfurfural (EMF) is considered to be a promising liquid biofuel that can replace the petroleum-based chemicals. In recent years, the synthesis of EMF from biomass resources has attracted more and more attentions at home and abroad. Currently, EMF was mainly obtained from the acid-catalyzed conversion of biomass-derived carbohydrates (e.g., fructose, glucose, sucrose, inulin) in ethanol medium. In this review, the chemical reaction process and the latest research progress in regard to EMF synthesis are introduced mainly from the starting materials, catalytic synthesis technology, catalytic behavior and characteristics, and economic feasibility. Based on the present research progress, the technology and engineering barriers for the conversion of biomass resources to yield EMF in commercial scales are analyzed and discussed, and the future research trend in this field is prospected. It is pointed out that future studies should be focus on developing high efficiency and environmental friendliness strategies for the synthesis of EMF from abundant and accessible biomass resources.
  • 加载中
    1. [1]

      E S Kim, S Liu, M M Abu-Omar et al. Energy Fuels, 2012, 26(2):1298~1304. 

    2. [2]

      M Mascal, E B Nikitin. ChemSusChem, 2009, 2(9):859~861. 

    3. [3]

      C H Zhou, X Xia, C X Lin et al. Chem. Soc. Rev., 2011, 40(11):5588~5617. 

    4. [4]

       

    5. [5]

       

    6. [6]

      A Corma, S Iborra, A Velty. Chem. Rev., 2007, 107(6):2411~2502. 

    7. [7]

      H Zhao, J E Holladay, H Brown et al. Science, 2007, 316(5831):1597~1600. 

    8. [8]

      X Tong, Y Ma, Y Li. Appl. Catal. A, 2010, 385(1):1~13. 

    9. [9]

      B Saha, M M Abu-Omar. Green Chem., 2014, 16(1):24~38. 

    10. [10]

      E J Ras, S Maisuls, P Haesakkers et al. Adv. Synth. Catal., 2009, 351(18):3175~3185. 

    11. [11]

      A Bredihhin, S Luiga, L Vares. Synthesis, 2016, 48(23):4181~4188. 

    12. [12]

      X Hu, C Z Li. Green Chem., 2011, 13(7):1676~1679. 

    13. [13]

      V E Tarabanko, M A Smirnova, M Y Chernyak. Chem. Sustain. Dev., 2005, 13:551~558. 

    14. [14]

      M Balakrishnan, E R Sacia, A T Bell. Green Chem., 2012, 14(6):1626~1634. 

    15. [15]

      Y Yang, C W Hu, M M Abu-Omar. J. Mol. Catal. A, 2013, 376:98~102. 

    16. [16]

      Y Yang, C W Hu, M M Abu-Omar. Bioresource Technol., 2012, 116(7):190~194. 

    17. [17]

      B Liu, Z H Zhang, K C Huang et al. Fuel, 2013, 113(2):625~631.

    18. [18]

      X Q Jia, J P Ma, P H Che et al. J. Energy Chem., 2013, 22(1):93~97. 

    19. [19]

      X M Zhou, Z H Zhang, B Liu et al. J. Ind. Eng. Chem., 2014, 20(2):644~649. 

    20. [20]

      J Liu, Y Tang, K Wu et al. Carbohyd. Res., 2012, 350(1):20~24.

    21. [21]

      X Yu, X Y Gao, R L Tao et al. Catalysts, 2017, 7(6):182. 

    22. [22]

      Y H Feng, B Q He, Y H Cao et al. Bioresource Technol., 2010, 101(5):1518~1521. 

    23. [23]

      M S Holm, S Saravanamurugan, E Taarning. Science, 2010, 328(5978):602~605. 

    24. [24]

      P Lanzafame, D M Temi, S Perathoner et al. Catal. Today, 2011, 175(1):435~441. 

    25. [25]

      P H Che, L Fang, J J Zhang et al. Bioresource Technol., 2012, 119(3):433~436. 

    26. [26]

      A Q Liu, Z H Zhang, Z F Fang et al. J. Ind. Eng. Chem., 2014, 20(4):1977~1984. 

    27. [27]

      G Morales, M Paniagua, J A Melero et al. Catal. Today, 2017, 279:305~316. 

    28. [28]

      K Nakajima, M Hara. ACS Catal., 2012, 2(7):1296~1304. 

    29. [29]

      B Liu, Z H Zhang. RSC Adv., 2013, 3(30):12313~12319. 

    30. [30]

      Z H Zhang, Y M Wang, Z F Fang et al. ChemPlusChem, 2014, 79(2):233~240. 

    31. [31]

      X F Liu, H Li, H Pan et al. J. Energy Chem., 2016, 25(3):523~530. 

    32. [32]

      L Hu, G Zhao, X Tang et al. Bioresource Technol., 2013, 148:501~507. 

    33. [33]

      K Malins, V Kampars, J Brinks et al. Appl. Catal. B, 2015, 176-177:553~558. 

    34. [34]

      B Liu, Z H Zhang, K C Huang. Cellulose, 2013, 20(4):2081~2089. 

    35. [35]

      M M Antunes, P A Russo, P V Wiper et al. ChemSusChem, 2014, 7(3):804~812. 

    36. [36]

      Z L Yuan, Z H Zhang, J D Zheng et al. Fuel, 2015, 150:236~242. 

    37. [37]

      Y Yao, Z Gu, Y Wang et al. Russ. J. Gen. Chem., 2016, 86(7):1698~1704. 

    38. [38]

      J M Wang, Z H Zhang, S W Jin et al. Fuel, 2017, 192:102~107. 

    39. [39]

      M J Earle, K R Seddon. Pure Appl. Chem., 2000, 72(7):1391~1398.

    40. [40]

      G A Kraus, T Guney. Green Chem., 2012, 14(6):1593~1596. 

    41. [41]

      B Liu, Z H Zhang, K J Deng. Ind. Eng. Chem. Res., 2012, 51(47):15331~15336. 

    42. [42]

      H X Guo, X H Qi, Y Hiraga et al. Chem. Eng. J., 2017, 314:508~514. 

    43. [43]

      P M Rao, A Wolfson, S Kababya et al. J. Catal., 2005, 232(1):210~225. 

    44. [44]

      Y Yang, M M Abu-Omar, C W Hu. Appl. Energy, 2012, 99(2):80~84.

    45. [45]

      H L Wang, T S Deng, Y G Wang et al. Bioresource Technol., 2013, 136:394~400. 

    46. [46]

      H L Wang, T S Deng, Y G Wang et al. Green Chem., 2013, 15(9):2379~2383. 

    47. [47]

      A Q Liu, B Liu, Y M Wang et al. Fuel, 2014, 117(1):68~73. 

    48. [48]

      Liu B, Z Z Gou, A Q Liu et al. J. Ind. Eng. Chem., 2015, 21:338~339. 

    49. [49]

      Y S Ren, B Liu, Z H Zhang et al. J. Ind. Eng. Chem., 2015, 21(1):1127~1131. 

    50. [50]

      H Li, K S Govind, R Kotni et al. Energy Conv. Manag., 2014, 88:1245~1251. 

    51. [51]

      S G Wang, Z H Zhang, B Liu et al. Catal. Sci. Technol., 2013, 3(8):2104~2112. 

    52. [52]

      C M Lew, N Rajabbeigi, M Tsapatsis. Ind. Eng. Chem. Res., 2012, 51(14):5364~5366. 

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    5. [5]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    8. [8]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    9. [9]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    10. [10]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(6)
  • Abstract views(2152)
  • HTML views(467)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return