Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide
- Corresponding author: Zahra Gholami, zahra.gholami@petronas.com.my
Citation:
Zahra Gholami, Noor Asmawati Mohd Zabidi, Fatemeh Gholami, Mohammadtaghi Vakili. Synthesis and characterization of niobium-promoted cobalt/iron catalysts supported on carbon nanotubes for the hydrogenation of carbon monoxide[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(7): 815-821.
KHANNA S, GOYAL A, MOHOLKAR V S. Microbial conversion of glycerol: Present status and future prospects[J]. Crit Rev Biotechnol, 2012,32(3):235-262. doi: 10.3109/07388551.2011.604839
HANNON M, GIMPEL J, TRAN M, RASALA B, MAYFIELD S. Biofuels from algae: Challenges and potential[J]. Biofuels, 2010,1(5):763-784. doi: 10.4155/bfs.10.44
MEHTA S, DESHMANE V, ZHAO S, KUILA D. Comparative studies of silica-encapsulated iron, cobalt, and ruthenium nanocatalysts for Fischer-Tropsch synthesis in silicon-microchannel microreactors[J]. Ind Eng Chem Res, 2014,53(42):16245-16253. doi: 10.1021/ie502193e
ALI S, ZABIDI N A M, SUBBARAO D. Effect of niobium promoters on iron-based catalysts for Fischer-Tropsch reaction[J]. J Fuel Chem Technol, 2012,40(1):48-53. doi: 10.1016/S1872-5813(12)60006-1
ZENNARO R, TAGLIABUE M, BARTHOLOMEW C H. Kinetics of Fischer-Tropsch synthesis on titania-supported cobalt[J]. Catal Today, 2000,58(4):309-319. doi: 10.1016/S0920-5861(00)00264-9
BAHOME M C, JEWELL L L, PADAYACHY K, HILDEBRANDT D, GLASSER D, DATYE A K, COVILLE N J. Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer-Tröpsch synthesis[J]. Appl Catal A: Gen, 2007,328(2):243-251. doi: 10.1016/j.apcata.2007.06.018
VAN SANTEN R, MARKVOORT A, FILOT I, GHOURI M, HENSEN E. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Phys Chem Chem Phys, 2013,15(40):17038-17063. doi: 10.1039/c3cp52506f
BLANCHARD J, ABATZOGLOU N. Nano-iron carbide synthesized by plasma as catalyst for Fischer-Tropsch synthesis in slurry reactors: The role of iron loading and K, Cu promoters[J]. Catal Today, 2014,237:150-156. doi: 10.1016/j.cattod.2013.12.027
SARI A. Investigation of the supercritical conditions for Fischer-Tropsch reaction over an industrial Co-Ru/γ-Al2O3 catalyst[J]. Chem Eng J, 2014,244:317-326. doi: 10.1016/j.cej.2014.01.086
WEI Z, ZOU Y R, CAI Y, TAO W, WANG L, PENG P. Composition of closed-system Fischer-Tropsch synthesis gases and the constraint factors[J]. Pet Sci Technol, 2014,32(21):2635-2641. doi: 10.1080/10916466.2011.632801
DE KLERK A. Fischer-Tropsch refining: Technology selection to match molecules[J]. Green Chem, 2008,10(12):1249-1279. doi: 10.1039/b813233j
JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas[J]. Catal Sci Technol, 2014,4(8):2210-2229. doi: 10.1039/C4CY00327F
ZHANG Q, CHENG K, KANG J, DENG W, WANG Y. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity[J]. ChemSusChem, 2014,7(5):1251-1264. doi: 10.1002/cssc.201300797
ARSALANFAR M, MIRZAEI A A, BOZORGZADEH H R, SAMIMI A, GHOBADI R. Effect of support and promoter on the catalytic performance and structural properties of the Fe-Co-Mn catalysts for Fischer-Tropsch synthesis[J]. J Ind Eng Chem, 2014,20(4):1313-1323. doi: 10.1016/j.jiec.2013.07.011
MIRZAEI AA, VAHID S, TORSHIZI HO. Effect of support and promoter on the catalytic performance and structural properties of the Fe-Co-Ni catalysts for CO hydrogenation[J]. J Nat Gas Sci Eng, 2013,15:106-117. doi: 10.1016/j.jngse.2013.10.002
KHARE R, BOSE S. Carbon nanotube based composites-A review[J]. J Miner Mater Charact Eng, 2005,4(1):31-46.
BEZEMER G L, RADSTAKE P B, KOOT V, VAN DILLEN A J, GEUS JW, DE JONG K P. Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition-precipitation[J]. J Catal, 2006,237(2):291-302. doi: 10.1016/j.jcat.2005.11.015
BOTES M, EUGENE CLOETE T. The potential of nanofibers and nanobiocides in water purification[J]. Crit Rev Microbiol, 2010,36(1):68-81. doi: 10.3109/10408410903397332
TRÉPANIER M, TAVASOLI A, ANAHID S. Deactivation behavior of carbon nanotubes supported cobalt catalysts in Fischer-Tropsch synthesis[J]. Iran J Chem Chem Eng, 2011,30(1):34-37.
ALI S, ZABIDI N A M, SUBBARAO D. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts[J]. Chem Cent J, 2011,5:68-75. doi: 10.1186/1752-153X-5-68
LU C Y, WEY M Y. The performance of CNT as catalyst support on CO oxidation at low temperature[J]. Fuel, 2007,86(7/8):1153-1161.
TAVASOLI A, SADAGIANI K, KHORASHE F, SEIFKORDI A, ROHANI A, NAKHAEIPOUR A. Cobalt supported on carbon nanotubes-A promising novel Fischer-Tropsch synthesis catalyst[J]. Fuel Process Technol, 2008,89(5):491-498. doi: 10.1016/j.fuproc.2007.09.008
TAVASOLI A, TRÉPANIER M, ABBASLOU R M M, DALAI A K, ABATZOGLOU N. Fischer-Tropsch synthesis on mono-and bimetallic Co and Fe catalysts supported on carbon nanotubes[J]. Fuel Process Technol, 2009,90(12):1486-1494. doi: 10.1016/j.fuproc.2009.07.007
DUVENHAGE D, COVILLE N. Fe: CoTiO2 bimetallic catalysts for the Fischer-Tropsch reaction I. Characterization and reactor studies[J]. Appl Catal A: Gen, 1997,153(1):43-67.
MACKAY R A, HENDERSON W. Introduction to Modern Inorganic Chemistry[M]. 6th edition. Abingdon: Taylor & Francis, 2002.
YU S, ZHANG T, XIE Y, WANG Q, GAO X, ZHANG R, ZHANG Y, SU H. Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal F-T synthesis[J]. Int J Hydrogen Energy, 2015,40(1):870-877. doi: 10.1016/j.ijhydene.2014.10.121
WANG D, ZHOU X, JI J, DUAN X, QIAN G, ZHOU X G, CHEN D, YUAN W. Modified carbon nanotubes by KMnO4 supported iron Fischer-Tropsch catalyst for direct conversion of syngas to lower olefins[J]. J Mater Chem A, 2015,3(8):4560-4567. doi: 10.1039/C4TA05202A
RIBEIRO M C, JACOBS G, DAVIS B H, CRONAUER D C, KROPF A J, MARSHALL C L. Fischer-Tropsch Synthesis: An in-situ TPR-EXAFS/XANES investigation of the influence of group I alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts[J]. J Phys Chem C, 2010,114(17):7895-7903. doi: 10.1021/jp911856q
TORRES GALÜIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal, 2013,3(9):2130-2149. doi: 10.1021/cs4003436
ZABIDI N A M. Synthesis of nanocatalysts via reverse microemulsion route for Fischer-Tropsch reactions. Microemulsions-An Introduction to Properties and Applications[M]. Croatia: InTech, 2012.
FABIANO D P, NAPOLITANO M N, TEIXEIRA G A, GUIMARÃES L L, FONSECA L C, SOARES R R. Fischer-Tropsch synthesis by Nb2O5-supported iron or cobalt catalysts[C]. The 2008 Annual Meeting Philadelphia. Pennsylvania Convention Center.
MENDES F M T, PEREZ C A C, NORONHA F B, SOUZA C D D, CESAR D V, FREUND H J, SCHMAL M. Fischer-Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: The nature of the surface and the effect on chain growth[J]. J Phys Chem B, 2006,110(18):9155-9163. doi: 10.1021/jp060175g
CHOUDHURY H A, MOHOLKAR V S. An optimization study of Fischer-Tropsch synthesis using commercial cobalt catalyst[J]. Int J Sci Eng Technol, 2013,2(2):31-39.
DAVIS B H, OCCELLI M L. Advances in Fischer-Tropsch Synthesis, Catalysts, and Catalysis[M]. Boca Raton: CRC Press, 2009.
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Ming Zhong , Xue Guo , Yang Liu , Kun Zhao , Hui Peng , Suijun Liu , Xiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
Fengshun Wang , Huachao Ji , Zefei Wu , Kang Chen , Wenqi Gao , Chen Wang , Longlu Wang , Jianmei Chen , Dafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
Yuetong Gao , Tong Mu , Xinyue Hu , Yang Pang , Chengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
(a): CNT; (b): Co/CNT; (c): 70Co:30Fe/CNT; (d): 1Nb-70Co:30Fe/CNT