Performance of oxidative coupling of methane on LiMn2O4/TiO2 catalysts
- Corresponding author: ZHANG Ze-kai, zzk@zjut.edu.cn CHEN Yin-fei, yfchen@zjtu.edu.cn
Citation:
LIU Yu-lan, ZHANG Ze-kai, NI Guang, LIU Hua-yan, CHEN Yin-fei. Performance of oxidative coupling of methane on LiMn2O4/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(6): 703-709.
KELLER G E, BHASIN M M. Synthesis of ethylene via oxidative coupling of methane:I. Determination of active catalysts[J]. J Catal, 1982,73(1):9-19. doi: 10.1016/0021-9517(82)90075-6
ZHANG Zhi-xiang, WANG Feng-rong, YUAN Hui-min, WANG Si-han, ZHANG Bao-jun, MENG Su-feng. The research progress of the oxidative coupling of methane to ethylene[J]. Mod Chem Ind, 2007,27(3):20-25.
WANG Fan, ZHENG Dan-xing. The thermodynamic equilibrium limit for the oxidative coupling of methane[J]. J Fuel Chem Technol, 2006,34(1):71-74.
KORF S J, ROOS J A, DERKSEN J W H C, VREEMAN J A, VAN OMMEN J G, ROSS J R H. Oxidative coupling of methane over Ba/CaO catalysts:A comparison with Li/MgO[J]. Appl Catal, 1990,59(1):291-309. doi: 10.1016/S0166-9834(00)82205-8
JI S F, XIAO T C, LI S B, CHOU L J, ZHANG B, XU C Z, HOU R I, YORK A P E, GREEN M L H. Surface WO4 tetrahedron:The essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts[J]. J Catal, 2003,220(1):47-56. doi: 10.1016/S0021-9517(03)00248-3
IVANOV D V, ISUPOVA L A, GERASIMOV E Y, DOVLITOVA L S, GLAZNEVA T S, PROSVIRIN I P. Oxidative methane coupling over Mg, Al, Ca, Ba, Pb-promoted SrTiO3 and Sr2TiO4:Influence of surface composition and microstructure[J]. Appl Catal A:Gen, 2014,485:10-19. doi: 10.1016/j.apcata.2014.07.024
CHEN Hong-shan, NIU Jian-zhong, ZHAGN Bing, LI Shu-ben. The synergistic effect over the components of Na-W-Mn/SiO2 catalyst[J]. Chin J Catal, 2000,21(1):55-58.
SONG Guo-hua, MIU Jian-wen, FAN Yi-ning, ZHOU Jing. In situ ESR and TPSR measurements of SrTi0.975Li0.025O3-δ nanocatalysts for oxidative coupling of methane at low-temperature[J]. J Fuel Chem Technol, 2010,38(4):490-495.
HARGREAVES J S J, HUTCHINGS G J, JOYNER R W, KIELY C J. Structural aspects of magnesium oxide catalysts for the oxidative coupling of methane[J]. Catal Today, 1991,10(3):259-266. doi: 10.1016/0920-5861(91)80005-T
WANG D J, ROSYNEK M P, LUNSFORD J H. The effect of chloride Ions on a Li+-MgO catalyst for the oxidative dehydrogenation of ethane[J]. J Catal, 1995,151(1):155-167. doi: 10.1006/jcat.1995.1018
XU M, LUNSFORD J. Effect of temperature on methyl radical generation over Sr/La2O3 catalysts[J]. Catal Lett, 1991,11(3/6):295-300.
MAHMOODI S, EHSANI M R, GHOREISHI S M. Effect of promoter in the oxidative coupling of methane over synthesized Mn/SiO2 nanocatalysts via incipient wetness impregnation[J]. J Ind Eng Chem, 2010,16(6):923-928. doi: 10.1016/j.jiec.2010.09.007
ARNDT S, OTREMBA T, SIMON U, YILDIZ M, SCHUBERT H, SCHOMÄCKER R. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?[J]. Appl Catal A:Gen, 2012,425-426:53-61. doi: 10.1016/j.apcata.2012.02.046
TIEMERSMA T P, TUINIER M J, GALLUCCI F, KUIPERS J A M, ANNALAND M V S. A kinetics study for the oxidative coupling of methane on a Mn/Na2WO4/SiO2 catalyst[J]. Appl Catal A:Gen, 2012,433-434:96-108. doi: 10.1016/j.apcata.2012.05.002
BECK B, FLEISCHER V, ARNDT S, HEVIA M G, URAKAWA A, HUGO P, SCHOMÄCKER R. Oxidative coupling of methane-A complex surface/gas phase mechanism with strong impact on the reaction engineering[J]. Catal Today, 2014,228:212-218. doi: 10.1016/j.cattod.2013.11.059
KOIRALA R, BVCHEL R, PRATSINIS S E, BAIKER A. Oxidative coupling of methane on flame-made Mn-Na2WO4/SiO2:Influence of catalyst composition and reaction conditions[J]. Appl Catal A:Gen, 2014,484:97-107. doi: 10.1016/j.apcata.2014.07.013
KOU Y, WANG H, ZHANG H, YANG X. Amorphous features of working catalysts[J]. Catal Today, 1999,51(1):47-57. doi: 10.1016/S0920-5861(99)00007-3
MALEKZADEH A, KHODADADI A, ABEDINI M, AMINI M, BAHRAMIAN A, DALAI A K. Correlation of electrical properties and performance of OCM MOx/Na2WO4/SiO2 catalysts[J]. Catal Commun, 2001,2(8):241-247. doi: 10.1016/S1566-7367(01)00034-6
WANG D J, ROSYNEK M P, LUNSFORD J H. Oxidative coupling of methane over oxide-supported sodium-manganese catalysts[J]. J Catal, 1995,155(2):390-402. doi: 10.1006/jcat.1995.1221
MALEKZADEH A, KHODADADI A, DALAI A K, ABEDINI M. Oxidative coupling of methane over lithium doped (Mn+W)/SiO2 catalysts[J]. J Nat Gas Chem, 2007,16(2):121-129. doi: 10.1016/S1003-9953(07)60037-1
ZHONG W, DAI H X, NG C F, AU C T. A comparison of nanoscale and large-size BaCl2-modified Er2O3 catalysts for the selective oxidation of ethane to ethylene[J]. Appl Catal A:Gen, 2000,203(2):239-250. doi: 10.1016/S0926-860X(00)00486-5
ZHAO Q, BAO X H, WANG Y, LIN L W, LI G, GUO X W, WANG X S. Studies on superoxide O2- species on the interaction of TS-1 zeolite with H2O2[J]. J Mol Catal A:Chem, 2000,157(1/2):265-268.
WANG Z, ZOU G, LUO X, LIU H, GAO R, CHOU L, WANG X. Oxidative coupling of methane over BaCl2-TiO2-SnO2 catalyst[J]. J Nat Gas Chem, 2012,21(1):49-55. doi: 10.1016/S1003-9953(11)60332-0
SHEN Hong-fu, WANG Xin-ping, LIU Qin. Li2SO4-MnxOy/TiO2 catalyst for the oxidative coupling of methane[J]. Chin J Catal, 1990,11(1):60-65.
KONDRATENKO E V, WOLF D, BAERNS M. Influence of electronic properties of Na2O/CaO catalysts on their catalytic characteristics for the oxidative coupling of methane[J]. Catal Lett, 1999,58:217-223. doi: 10.1023/A:1019058724099
MALEKZADEH A, ABEDINI M, KHODADADI A A, AMINI M, MISHRA H K, DALAI A K. Critical influence of Mn on low-temperature catalytic activity of Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane[J]. Catal Lett, 2002,84:45-51. doi: 10.1023/A:1021020516674
YANG T L, FENG L B, SHEN S K. Oxygen species on the surface of La2O3/CaO and its role in the oxidative coupling of methane[J]. J Catal, 1994,145:384-389. doi: 10.1006/jcat.1994.1048
GOPINATH C S, HEGDE S G, RAMASWAMY A V, MAHAPATRA S. Photoemission studies of polymorphic CaCO3 materials[J]. Mater Res Bull, 2002,37(7):1323-1332. doi: 10.1016/S0025-5408(02)00763-8
FERREIRA V J, TAVARES P, FIGUEIREDO J L, FARIA J L. Ce-doped La2O3 based catalyst for the oxidative coupling of methane[J]. Catal Commun, 2013,42:50-53. doi: 10.1016/j.catcom.2013.07.035
JONES C A, LEONARD J J, SOFRANKO J A. The oxidative conversion of methane to higher hydrocarbons over alkali-promoted Mn-SiO2[J]. J Catal, 1987,103:311-319. doi: 10.1016/0021-9517(87)90123-0
LI H, VRINAT M, BERHAULT G, LI D, NIE H, AFANASIEV P. Hydrothermal synthesis and acidity characterization of TiO2 polymorphs[J]. Mater Res Bull, 2013,48(9):3374-3382. doi: 10.1016/j.materresbull.2013.05.017
KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1994,3(2):173-189.
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
a: TiO2; b: Li/TiO2; c: Mn/TiO2; d: LiMn2O4;e: LiMn2O4/TiO2; f: Li-Mn/TiO2
a: LiMn2O4; b: LiMn2O4/TiO2; c: Li-Mn/TiO2
a: LiMn2O4; b: Li/TiO2; c: Mn/TiO2;d: LiMn2O4/TiO2; e: Li-Mn/TiO2
a: LiMn2O4; b: Li/TiO2;c: Mn/TiO2; d: LiMn2O4/TiO2;e: Li-Mn/TiO2