Citation: LÜ Wen-dong, DING Bao-hong, FENG Xu-yang, WANG Qiang. Application of nano-Fe3O4 catalyst in the viscosity reduction of heavy oil by hydrothermal cracking[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1320-1328. shu

Application of nano-Fe3O4 catalyst in the viscosity reduction of heavy oil by hydrothermal cracking

  • Corresponding author: WANG Qiang, qwang0124@126.com
  • Received Date: 5 July 2019
    Revised Date: 12 August 2019

    Fund Project: the Liaoning Provincial Department of Education Basic Research Project L2017LFW002The project was supported by the Liaoning Provincial Department of Education Basic Research Project (L2017LFW002)

Figures(12)

  • Four nano-Fe3O4 catalysts with different particle sizes were prepared by high temperature pyrolysis and low temperature two-phase reflux method; their performance in the hydrothermal cracking and viscosity reduction of Liaohe oil-field heavy oil was investigated. The results indicate that the addition of sodium sulfonate (HABS) surfactant in the preparation process can effectively improve the dispersion of Fe3O4 catalyst in heavy oil for hydrothermal cracking; the HABS-modified 9 nm Fe3O4 catalyst prepared by high temperature pyrolysis exhibits the best viscosity reduction performance. In a reaction system with 250 g heavy oil and 0.75 g n-hexane as hydrogen donor, where the mass ratio of heavy oil:catalyst:reservoir water is 100:0.3:30, the viscosity of heavy oil can be reduced from 86200 to 2065 mPa·s after reaction at 240℃ for 24 h; the viscosity reduction rate is as high as 97.6%. Analysis on the reaction mechanism suggests that the nano-Fe3O4 catalyst attacks the C-S bond on the long-chain heavy oil, breaks the bond and converts the heavy component into light component.
  • 加载中
    1. [1]

      ZOU C, ZHAI G, ZHANG G, WANG H, ZHANG G, LI J, WANG Z, WEN Z, MA F, LIANG Y, YANG Z, LI X, LIANG K. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petrol Explor Dev, 2015,42(1):14-28. doi: 10.1016/S1876-3804(15)60002-7

    2. [2]

      NIU J, HU J. Formation and distribution of heavy oil and tar sands in China[J]. Mar Petrol Geol, 1999,16(1):0-95.  

    3. [3]

      PANG Z, LYU X, ZHANG F, WU T, GAO Z, GENG Z, LUO C. The macroscopic and microscopic analysis on the performance of steam foams during thermal recovery in heavy oil reservoirs[J]. Fuel, 2018,233:166-176. doi: 10.1016/j.fuel.2018.06.048

    4. [4]

      WANG Peng, XU Hai-xia, CHEN Lan, LIU Min, JIANG Xu-jian, ZHONG Ting, LIU Ying-bin, ZHANG Bo. Development of viscosity reducer for thinning production of high temperature heavy oil[J]. Drill Prod Technol, 2018,41(1):95-98. doi: 10.3969/J.ISSN.1006-768X.2018.01.29

    5. [5]

      SHI L, MA D, LIU P, LI X, XI C, WANG C. Experimental and numerical simulation studies on effects of viscosity reducers for steam assisted gravity drainage performances in extra-heavy oil reservoirs[J]. J Petrol Sci Eng, 2018.  

    6. [6]

      WANG Y, REN S, ZHANG L. Mechanistic simulation study of air injection assisted cyclic steam stimulation through horizontal wells for ultra heavy oil reservoirs[J]. J Pet Sci Eng, 2019,172:209-216. doi: 10.1016/j.petrol.2018.09.060

    7. [7]

      LI X, SHI L, LI H, LIU P, LUO J, YUAN Z. Experimental study on viscosity reducers for SAGD in developing extra-heavy oil reservoirs[J]. J Pet Sci Eng, 2018,166:25-32. doi: 10.1016/j.petrol.2018.03.022

    8. [8]

      WANG Y, REN S, ZHANG L. Mechanistic simulation study of air injection assisted cyclic steam stimulation through horizontal wells for ultra heavy oil reservoirs[J]. J Pet Sci Eng, 2019,172:209-216. doi: 10.1016/j.petrol.2018.09.060

    9. [9]

      ZHOU W, DONG M, CHEN S. Investigation of initial water mobility and its effects on SAGD performance in bitumen reservoirs and oil sands[J]. J Pet Sci Eng, 2015,135:39-49. doi: 10.1016/j.petrol.2015.08.013

    10. [10]

      PANG Z, WU Z, ZHAO M. A novel method to calculate consumption of non-condensate gas during steam assistant gravity drainage in heavy oil reservoirs[J]. J Pet Sci Eng, 2017,130:76-85.  

    11. [11]

      HART A, OMAJALI J B, MURRAY A J, MACASKIE L E, GREAVES M, WOOD J. Comparison of the effects of dispersed noble metal (Pd) biomass supported catalysts with typical hydrogenation (Pd/C, Pd/Al2O3) and hydrotreatment catalysts (CoMo/Al2O3) for In-situ heavy oil upgrading with toe-to-heel air injection (THAI)[J]. Fuel, 2016,180:367-376. doi: 10.1016/j.fuel.2016.04.064

    12. [12]

      HART A, WOOD J, GREAVES M. In situ catalytic upgrading of heavy oil using a pelletized Ni-Mo/Al2O3, catalyst in the THAI process[J]. J Pet Sci Eng, 2017,156:958-965. doi: 10.1016/j.petrol.2017.06.067

    13. [13]

      LV W, DING B, FENG X, WANG Q. A highly efficient UV-emitting Mg3Y2Ge3O12:Bi3+, crystal as a fluorescent irradiation source for use in heavy oil viscosity reduction[J]. J Mater Sci:Mater Electron, 2019,30(7):7095-7102. doi: 10.1007/s10854-019-01026-4

    14. [14]

      SHI C, YANG W, CHEN J, SUN X, CHEN W, AN H, DUO Y, PEI M. Application and mechanism of ultrasonic static mixer in heavy oil viscosity reduction[J]. Ultrason Sonochem, 2017,37:648-653. doi: 10.1016/j.ultsonch.2017.02.027

    15. [15]

      CHEN Q, ZHU Y, WANG M, REN G, LIU Q, XÜ Z, SUN D. Viscosity reduction of extra-heavy oil using toluene in water emulsions[J]. Colloid Surface A, 2019,560:252-259. doi: 10.1016/j.colsurfa.2018.10.025

    16. [16]

      LU Jian, SHENG Jian-ping, LUO Jian-min, SU Xin-tai. Viscosity reduction of heavy oil by aquathermolysis with oil-soluble Fe3O4 nanoparticles[J]. Guangdong Chem Ind, 2017,44(6):56-58. doi: 10.3969/j.issn.1007-1865.2017.06.025

    17. [17]

      AKHMADIYAROV A A, RAKIPOV I T, KHACHATRIAN A A, PETROV A A, SITNOV S A, GERASIMOV A V, OSIN Y N, VARFOLOMEEV M A. Thermocatalytic upgrading of heavy oil by iron oxides nanoparticles synthesized by oil-soluble precursors[J]. J Petrol Sci Eng, 2018,169:200-204. doi: 10.1016/j.petrol.2018.04.066

    18. [18]

      NGUYEN M T, NGUYEN N T, CHO J, PARK C, PARK S, JUNG J, LEE C W. A review on the oil-soluble dispersed catalyst for slurry-phase hydrocracking of heavy oil[J]. J Ind Eng Chem, 2016,43:1-2. doi: 10.1016/j.jiec.2016.07.057

    19. [19]

      CHEN Gang, ZHAO Wei, NING Yang, ZHANG Jie, LI Yong-fei, SONG Hua. Aquathermolysis of heavy oil at relatively low temperature catalyzed by water-soluble organic Co(Ⅱ)salt[J]. Chem Res, 2016,27(3):307-311. doi: 10.3969/j.issn.1004-1656.2016.03.005

    20. [20]

      RAFFA P, BROEKHUIS A A, PICCHIONI F. Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers:Towards new potential systems for enhanced oil recovery[J]. J Appl Polym Sci, 2016,133(42)44100.  

    21. [21]

      RUIZ M P, FARIA J, SHEN M, DREXLER S, PRASOMSRI T, RESASCO D E. Nanostructured carbon-metal oxide hybrids as amphiphilic emulsion catalysts[J]. ChemSusChem, 2011,4(7):964-974. doi: 10.1002/cssc.201000322

    22. [22]

      LI Chen. Preparation of modified SO42-/ZrO2-TiO2 solid superacid and their catalytic performance in heavy oil reduction[D]. Kaifeng: Henan University, 2016.

    23. [23]

      EZZAT A O, ATTA A M, AL-LOHEDAN H A, HASHEM A L. Synthesis and application of new surface active poly (ionic liquids) based on 1, 3-dialkylimidazolium as demulsifiers for heavy petroleum crude oil emulsions[J]. J Mol Liq, 2018,251:201-211. doi: 10.1016/j.molliq.2017.12.081

    24. [24]

      BERA A, BELHAJ H. Ionic liquids as alternatives of surfactants in enhanced oil recovery-a state-of-the-art review[J]. J Mol Liq, 2016,224:177-188. doi: 10.1016/j.molliq.2016.09.105

    25. [25]

      ZHAO Fa-jun, LIU Hao-liang, ZHANG Xin-yu, AN Yi, TIAN Zhe-xi. Catalysts of metal nano-particles for aquathermolysis of heavy crude oil[J]. Oilfield Chem, 2017,34(3):567-570.  

    26. [26]

      LI H, CUI K, JIN L, WANG L, YU B. Experimental study on the viscosity reduction of heavy oil with nano-catalyst by microwave heating under low reaction temperature[J]. J Pet Sci Eng, 2018,170:374-382. doi: 10.1016/j.petrol.2018.06.078

    27. [27]

      ALAEI M, BAZMI M, RASHIDI A, RAHIMI A. Heavy crude oil upgrading using homogenous nanocatalyst[J]. J Pet Sci Eng, 2017,158:47-55. doi: 10.1016/j.petrol.2017.08.031

    28. [28]

      DEHKORDI J A, JAFARI A, SABET S A, KARAMI F. Kinetic studies on extra heavy crude oil upgrading using nanocatalysts by applying CFD techniques[J]. Chin J Chem Eng, 2018,26:343-355. doi: 10.1016/j.cjche.2017.07.001

    29. [29]

      LAM-MALDONADO M, MELO-BANDA J A, MACIAS-FERRER D, PORTALES-MARTINEZ B, DOMINGUEZ J M, SILVA-RODRIGO R, PARAMO-GARCIA U, MATA-PADILLA J M. Transition metal nanocatalysts by modified inverse microemulsion for the heavy crude oil upgrading at reservoir[J]. Catal Today, 2018S0920586118306722.  

    30. [30]

      LAM-MALDONADO M, MELO-BANDA J A, MACIAS-FERRER D, SCHACHT P, MATA-PADILLA J M, REYES DE LA TORRE A I, MERAZ MELO M A, DOMINGUEZ J M. NiFe nanocatalysts for the hydrocracking heavy crude oil[J]. Catal Today, 2018, in press.

    31. [31]

      SONG Jing-yang, HE Yong. Research on the viscosity of heavy oil or asphalt by nano-grade metal[J]. Chem Eng Des Commun, 2018,44(1)76. doi: 10.3969/j.issn.1003-6490.2018.01.067

    32. [32]

      CAI Ke-ying, ZHOU Ying-mei, TAO Wei, ZHOU Lei. Preparation of Fe3O4 particles and their activity in reduction of nitrobenzene with hydrazine hydrate[J]. Inorg Chem Ind, 2017,49(12):65-68.  

    33. [33]

      YAO Zhao-zhong, ZHU Jing-yi, LI Xiao-gang, LUO Dan. Research progress on nano-materials application for heavy oil recovery enhancement[J]. Appl Chem Ind, 2016,45(5):949-952.  

    34. [34]

      LI Y, MA F, SU X, SHI L. Ultra-large-scale synthesis of Fe3O4 nanoparticles and their application for direct coal liquefaction[J]. Ind Eng Chem Res, 2014,53(16):6718-6722. doi: 10.1021/ie500216c

    35. [35]

      ZHAO Fa-jun, LIU Yong-jian, ZHAO Tian-hong, WEN Shou-bin, ZHAO Guo. Advance in catalytically upgrading heavy oil by aquathermolysis using hydrogen donor[J]. Oilfield Chem, 2006,23(4):379-384. doi: 10.3969/j.issn.1000-4092.2006.04.022

    36. [36]

      ZHANG Bo, LIU Yong-Jian, ZHAO Fa-jun, HU Shao-bin. Catalytic upgrading heavy oil for viscosity reduction in steam injection[J]. Oilfield Chem, 2011,28(2):167-171.  

    37. [37]

      YANG Cui-ding. Petrochemical Analysis Method:RIPP Test Method[M]. Beijing:Science Press, 1990.

    38. [38]

      GAWANDE M B, BRANCO P S, VARMA R S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies[J]. ChemInform, 2013,42(8):3371-3393.  

    39. [39]

      ZHU Lu-ping. Design, preparation and magnetic properties of micro/nanostructured magnetic materials[D]. Beijing: Technical Institute of Physics and Chemistry CAS, 2008. 

    40. [40]

      SHEN Bin, WANG Yong-an, WANG Zhi-fei, ZHANG Ling. Catalytic activity of an oxime carbapalladacycle complex grafted onto superparamagnetically mesoporous nanoparticles for the heck reaction[J]. Acta Phys-Chim Sin, 2010,26(7):1860-1866. doi: 10.3866/PKU.WHXB20100707

    41. [41]

      ZHANG Li-de. Nanomaterials and nanostructures[J]. B Chinese Acad Sci, 2001,16(6):444-445.  

    42. [42]

      XU Z, SHEN C, HOU Y, GAO H, SUN S. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles[J]. Chem Mater, 2009,21(9):1778-1780. doi: 10.1021/cm802978z

    43. [43]

      HAN Xiao-qiang, LI Ai-jun, LIU Qiong. Study of the effect of the water in heavy oil on viscosity[J]. Xinjiang Pet Sci Technol, 2010,20(4):48-50.  

    44. [44]

      LI En-tian, WANG Shu-li, ZHAO Hui-jun, SHEN Long-she, WANG Wei-min. Experimental study on apparent viscosity of water cut super-heavy oils[J]. Oil Gas Storage Transp, 2007,26(11):52-55. doi: 10.3969/j.issn.1000-8241-D.2007.11.015

    45. [45]

      BELGRAVE J D M, MOORE R G, URSENBACH M G. Comprehensive kinetic models. for the aquathermolysis of heavy oils[J]. J Can Pet Technol, 1997,36(4):38-44.  

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    3. [3]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    4. [4]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    5. [5]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    6. [6]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    7. [7]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    8. [8]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    19. [19]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    20. [20]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

Metrics
  • PDF Downloads(8)
  • Abstract views(857)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return