Citation: YU Sheng-hui, ZHANG Cheng, YUAN Chang-le, MA Lun, FANG Qing-yan, CHEN Gang. Study on arsenic/lead adsorption characteristics by mineral oxides in coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1345-1355. shu

Study on arsenic/lead adsorption characteristics by mineral oxides in coal-fired flue gas

  • Corresponding author: ZHANG Cheng, chengzhang@mail.hust.edu.cn
  • Received Date: 1 September 2020
    Revised Date: 9 September 2020

    Fund Project: National Key Research and Development Programme of China 2018YFB0605105The project was supported by National Key Research and Development Programme of China (2018YFB0605105)

Figures(14)

  • The As2O3 or PbO adsorption characteristics using typical mineral oxides as the sorbents were studied in a two-stage fixed-bed reactor under a simulated flue gas, and the density of atomic states, adsorption sites, and adsorption energy for the adsorption reaction were calculated by density functional theory (DFT). The results demonstrate that CaO has a large As2O3 adsorption capacity, with an arsenic adsorption capacity of 5.25 mg/g at 900 ℃, followed by Fe2O3, MgO, and Al2O3; and the adsorbed arsenic exists in the form of As3+ and As5+ arsenates. Kaolin and fly ash have large PbO adsorption capacities, with the maximum lead adsorption capacities of 6.69 and 2.75 mg/g, respectively, followed by SiO2 and Al2O3, and the adsorption capacity for lead with the 50%SiO2/50%Al2O3 mixture is higher than that with their single oxide. The oxygen atoms on the surface of the sorbents are the active sites for As2O3 and the unsaturated Si and Al atoms exposed on the surface of the sorbents are the active sites for PbO. In addition, the adsorption temperature and flue gas atmosphere have significant effects on the adsorption capacity and adsorption products of the sorbents.
  • 加载中
    1. [1]

      CHEN J, LIU G, KANG Y, WU B, SUN R, ZHOU C, WU D. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China[J]. Chemosphere, 2013,90(6):1925-1932.  

    2. [2]

      Environmental Protection Agency. Locating and estimating air emissions from sources of arsenic and arsenic compounds: Final Report[R]. United States: EPA, 1998.

    3. [3]

      LIU Hui-min, WANG Chun-bo, GUO Yong-cheng, ZHANG Yue, HUANG Xing-zhi, WANG Jia-wei. Experimental and modeling study on arsenic volatilization during co-combustion of high arsenic lignite and low arsenic bituminous coal[J]. CIESC J, 2016,67(10):4477-4484.  

    4. [4]

      WANG C, ZHANG Y, SHI Y, LIU H, ZOU C, WU H, KANG X. Research on collaborative control of Hg, As, Pb and Cr by electrostatic-fabric-integrated precipitator and wet flue gas desulphurization in coal-fired power plants[J]. Fuel, 2017,210:527-534.  

    5. [5]

      TIAN H, WANG Y, XUE Z, QU Y, CHAI F, HAO J. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China[J]. Sci Total Environ, 2011,409(16):3078-3081.  

    6. [6]

      FANG Ting. Environmental geochemistry of lead in coal mining area[D]. Hefei: University of Science and Technology of China, 2015.

    7. [7]

      CHEN L, ZHOU S, WU S, WANG C, HE D. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China[J]. Environ Pollut, 2019,255113301.  

    8. [8]

      WANG J, ZHANG Y, LIU Z, NORRIS P, ROMERO C E, XU H, PAN W. Effect of coordinated air pollution control devices in coal-fired power plants on arsenic emissions[J]. Energy Fuels, 2017,31(7):7309-7316.  

    9. [9]

      OLIVEIRA M L, IZQUIERDO M, QUEROL X, LIEBERMAN R N, SAIKIA B K, SILVA L F. Nanoparticles from construction wastes: A problem to health and the environment[J]. J Clean Prod, 2019,219:236-243.  

    10. [10]

      LINAK WP, WENDT J O. Toxic metal emissions from incineration: Mechanisms and control[J]. Prog Energy Combust Sci, 1993,19:145-185.  

    11. [11]

      WENDT J O, LEE S J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications[J]. Fuel, 2010,89:894-903.  

    12. [12]

      WANG J, ZHANG Y, WANG T, XU H, PAN W. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020,380122561.  

    13. [13]

    14. [14]

      ZHANG K, ZHANG D, ZHANG K, CAO Y. Capture of gas-phase arsenic by ferrospheres separated from fly ashes[J]. Energy Fuels, 2016,30(10):8746-8752.  

    15. [15]

      MA H, AGNIHOTRIR , CHAUK S, GHOSHDASTIDAR A, FAN L. Mechanism of arsenic sorption by hydrated lime[J]. Environ Sci Technol, 1997,31(11):3226-3231.  

    16. [16]

      ZHANG Yue, LI Wen-han, WANG Chun-bo, LIU Hui-min, ZHANG Yong-sheng, PAN Wei-ping. Experimental study on As2O3 capture from gas phase using ultrasound-assisted prepared Fe2O3/ Al2O3 sorbent[J]. J Fuel Chem Technol, 2015,43(9):1134-1141.  

    17. [17]

      ZHANG Y, LIU J. Density functional theory study of arsenic adsorption on the Fe2O3 (001) surface[J]. Energy Fuels, 2019,33(2):1414-1421.  

    18. [18]

      GAO Z, LONG H, DAI B, GAO X. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion[J]. J Hazard Mater, 2019,373:335-346.  

    19. [19]

      YAO H, NARUSE I. Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proc Combust Inst, 2005,30:3009-3016.  

    20. [20]

      YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology, 2009,7:477-482.  

    21. [21]

      KUO J, LIN C, WEY M. Effect of particle agglomeration on heavy metals adsorption by Al-and Ca-based sorbents during fluidized bed incineration[J]. Fuel Process Technol, 2011,92:2089-2098.  

    22. [22]

      GAO Z, LONG H, DAI B, GAO X. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion[J]. J Hazard Mater, 2019,373:335-346.  

    23. [23]

      WANG J, ZHANG Y, WANG T, XU H, PAN W. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020,380122561.  

    24. [24]

      HE Zi-qian, YU Sheng-hui, ZHANG Cheng, XU Hao, FANG Qing-yan, CHEN Gang. Effects of atmosphere on gas-phase arsenic adsorption by oxides and mechanism analysis[J]. Clean Coal Technol, 2020,26(4):190-195.

    25. [25]

      YU S, ZHANG C, MA L, TAN P, FANG Q, CHEN G. Deep insight into the effect of NaCl/HCl/SO2/CO2 in simulated flue gas on gas-phase arsenic adsorption over mineral oxide sorbents[J]. J Hazard Mater, 2021,403123617.  

    26. [26]

      YUAN C, ZHANG C, YU S, XU H, LI X, FANG Q, CHEN G. Experimental and density functional theory study of the adsorption characteristics of CaO for SeO2 in simulated flue gas and the effect of CO2[J]. Energy Fuels, 2020. https://doi.org/10.1021/acs.energyfuels.0c02044.

    27. [27]

      SCHWINDT VC, ARDENGHI JS, BECHTHOLD P, GONZALEZA EA, JASENA PV, JUANA A, BATICB BS, JENKO M. Selenium adsorption at different coverages on Fe (100) and Fe (111): A DFT study[J]. Appl Surf Sci, 2014,315:252-260.  

    28. [28]

      FAN Y, ZHUO Y, LOU Y, ZHU Z, LI L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017,413:366-371.  

    29. [29]

      HE F, ZHOU L, ZHANG X, LI W, YANG L, ZHAO H, HE X. Synthesis and anisotropic properties of alumina-silica aerogels constructed by silica sols infiltrated into unidirectional frozen alumina templates[J]. Ceram Int, 2019,45:11963-11970.  

    30. [30]

      XU Hao, ZHANG Cheng, YUAN Chang-le, YU Sheng-hui, LI Quan, FANG Qing-yan, CHEN Gang. Study on arsenic adsorption characteristics by mineral elements in simulated flue gas atmosphere[J]. J Fuel Chem Technol, 2019,47(7):876-883.  

    31. [31]

      CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015,267:201-206.  

    32. [32]

      LIU T, XUE L, GUO X, HUANG Y, ZHENG C. DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on α-Fe2O3(001)[J]. Environ Sci Technol, 2016,50(9):4863-4868.  

    33. [33]

      WANG H, CHAI Z, WANG D. Adsorption of uranyl on hydroxylated α-SiO2(001): A first-principle study[J]. Dalton Trans, 2014,44:1646-1655.  

    34. [34]

      SU Q, JU X, FENG Q, SI Y. Periodic DFT study of adsorption of nitroamine molecule on α-Al2O3(0 0 1) surface[J]. Appl Surf Sci, 2012,258(19):7334-7342.  

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(4)
  • Abstract views(405)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return