Citation: Zhang Yilin, Yan Yong, Ge Ying, Wang Xuejun, Qiao Chengfang. Ni-Catalyzed Suzuki Coupling Reaction[J]. Chemistry, ;2019, 82(5): 404-414. shu

Ni-Catalyzed Suzuki Coupling Reaction

  • Corresponding author: Zhang Yilin, yilin_190@126.com
  • Received Date: 28 October 2018
    Accepted Date: 14 December 2018

Figures(7)

  • Progress in Ni-catalyzed Suzuki coupling reaction including the development path and all kinds of Ni-catalyzed Suzuki coupling reaction (C-Halo bond cleavage, C-O bond cleavage, C-C bond cleavage, C-N bond cleavage and C-S bond cleavage) in the past decade have been reviewed. Through nearly ten years of research, various new catalysts, ligands and additives have been developed, resulting in greatly improved reactivity and milder reaction conditions. The mechanism of Ni-catalyzed Suzuki coupling reaction was analyzed. It was found that Ni catalyzed Suzuki coupling reaction can be divided into Ni(0)/Ni(Ⅱ) cycle and Ni(Ⅰ)/Ni(Ⅲ) cycle. It is considered that the research and development of cheap metal nickel catalyst is an important direction to study the Suzuki coupling reaction. In the future, the study of Ni catalytic Suzuki coupling reaction will focus on mechanism investigation, design of new catalysts and ligands, multi-type C-C bond construction (Csp2-Csp3, Csp3-Csp3) and asymmetric Ni-catalyzed Suzuki coupling reaction of multi-type substrates.
  • 加载中
    1. [1]

      B M Rosen, K W Quasdorf, D A Wilson et al. Chem. Rev., 2011, 111:1346~1416. 

    2. [2]

      R Jana, T P Pathak, M S Sigman. Chem. Rev., 2011, 111:1417~1492. 

    3. [3]

      F S Han. Chem. Soc. Rev., 2013, 42:5270~5298. 

    4. [4]

      M Irene, N Oscar. Molecules, 2015, 20:7528 

    5. [5]

      T Ryosuke, M Kei, Y Junichiro. Chem. Soc. Rev., 2017, 46:5864~5888. 

    6. [6]

       

    7. [7]

      V Percec, J Y Bae, D H Hill. J. Org. Chem., 1995, 60:1060~1065. 

    8. [8]

      S A Macgregor, G W Neave, C Smith. Faraday Discuss, 2003, 124:111~127. 

    9. [9]

      V P Ananikov, D G Musaev, K Morokuma. Organometallics, 2005, 24:715~723. 

    10. [10]

      S Saito, M Sakai, N Miyaura. Tetrahed. Lett., 1996, 37:2993~2996. 

    11. [11]

      A F Indolese. Tetrahed. Lett., 1997, 38:3513~3516. 

    12. [12]

      B H Lipshutz, J A Sclafani, P A Blomgren. Tetrahedron, 2000:2139~2144. 

    13. [13]

      B H Lipshutz, W Chrisman, S Tasler et al. J. Org. Chem., 2003, 68:1177~1189. 

    14. [14]

      Z Y Tang, Q S Hu. J. Am. Chem. Soc., 2004, 126:3058~3059. 

    15. [15]

      Z Y Tang, S Spinella, Q S Hu. Tetrahed. Lett., 2006, 47(14):2427~2430. 

    16. [16]

      D A Wilson, C Wilson J, B M Rosen et al. Org. Lett., 2008, 10:4879~4882. 

    17. [17]

      J Zhou, G C Fu. J. Am. Chem. Soc., 2004, 126:1340~1341. 

    18. [18]

      J Liu, M J Robins. Org. Lett., 2005, 7:1149~1151. 

    19. [19]

      Y B Zhou, Z X Xi, W Z Chen et al. Organometallics, 2008, 27:5911~5920. 

    20. [20]

      J I Kuroda, K Inamoto, K Hiroya et al. Eur. J. Org. Chem., 2009, (14):2251~2261. 

    21. [21]

      K Inamoto, J Kuroda, E Kwon et al. J. Organomet. Chem., 2009, 694:389~396. 

    22. [22]

      H Amii, K Uneyama. Chem. Rev., 2009, 109:2119~2183. 

    23. [23]

      J Han, Y Liu, R Guo. J. Am. Chem. Soc., 2009, 131:2060~2061. 

    24. [24]

      T Hoshi, T Honma, A Mori et al. J. Org. Chem., 2013, 78:11513~11524. 

    25. [25]

      T Schaub, M Backes, U Radius. J. Am. Chem. Soc., 2006, 128:15964~15965. 

    26. [26]

      M Tobisu, T Xu, T Shimasaki et al. J. Am. Chem. Soc., 2011, 133:19505~19511. 

    27. [27]

      Y Xiong, T Huang, X F Ji et al. Org. Biomol. Chem., 2015, 13:7389~7392. 

    28. [28]

      S D Ramgren, J Hie, Y X Ye et al. Org. Lett., 2013, 15(15):3950~3953. 

    29. [29]

      X H Fan, L M Yang. Eur. J. Org. Chem., 2011, (8):1467~1471.

    30. [30]

      S Handa, E D Slack, B H Lipshutz. Angew. Chem. Int. Ed., 2015, 54:11994~11998. 

    31. [31]

      B Saito, G C Fu. J. Am. Chem. Soc., 2008, 130:6694~6695. 

    32. [32]

      A Wilsily, F Tramutola, N A Owston et al. J. Am. Chem. Soc., 2012, 134:5794~5797. 

    33. [33]

      Z Lu, A Wilsily, G C Fu. J. Am. Chem. Soc., 2011, 133:8154~8157. 

    34. [34]

      S L Zultanski, G C Fu. J. Am. Chem. Soc., 2013, 135:624~627. 

    35. [35]

      W C Huang, X L Wan, Q L Shen. Angew. Chem., 2017, 129(39):12148~12151. 

    36. [36]

      G A Molander, F Beaumard. Org. Lett., 2010, 12:4022~4025. 

    37. [37]

      P Leowanawat, N Zhang, A M Remerita et al. J. Org. Chem., 2011, 76:9946~9955. 

    38. [38]

      K W Quasdorf, A F Aurora, P Liu et al. J. Am. Chem. Soc., 2011, 133:6352~6363. 

    39. [39]

      B M Rosen, K W Quasdorf, D A Wilson et al. Chem. Rev., 2011, 111:1346~1416. 

    40. [40]

      N D Schley, G C Fu. J. Am. Chem. Soc., 2014, 136:16588~16593. 

    41. [41]

      J Cornella, G B Enrique, R Martin. J. Am. Chem. Soc., 2013, 135:1997~2009. 

    42. [42]

      L M Guard, B M Mohadjer, G W Brudvig et al. Angew. Chem. Int. Ed., 2015, 54:13352~13556. 

    43. [43]

      B M Mohadjer, A Nova, D Balcells et al. J. Am. Chem. Soc., 2017, 139:922~936. 

    44. [44]

      P A Payard, L A Perego, I Ciofini et al. ACS Catal., 2018, 8:4812~4823. 

    45. [45]

      M Tobisu, T Shimasaki, N Chatani. Angew. Chem. Int. Ed., 2008, 47:4866~4869. 

    46. [46]

      L Guo, X Q Liu, C Baumann et al. Angew. Chem. Int. Ed., 2016, 55:15415~15419. 

    47. [47]

      L Guo, C C Hsiao, H F Yue et al. ACS Catal., 2016, 6(7):4438~4442. 

    48. [48]

      D G Yu, M Yu, B T Guan et al. Org. Lett., 2009, 11:3374~3377. 

    49. [49]

      M Tobisu, A Yasutome, H Kinuta et al. Org. Lett., 2014, 16:5572~5575. 

    50. [50]

      K Nakamura, M Tobisu, N Chatani. Org. Lett., 2015, 17:6142~6145. 

    51. [51]

      K Wu, A G Doyle. Nat. Chem., 2017, 9:779~784. 

    52. [52]

      A L Hansen, J P Ebran, T M Gøgsig et al. J. Org. Chem., 2007, 72:6464~6472. 

    53. [53]

      Y Nan, Z Yang. Tetrahed. Lett., 1999, 40:3321~3324. 

    54. [54]

      Y L Zhao, Y Li, Y Li et al. Chem. Eur. J., 2010, 16:4991~4994. 

    55. [55]

      H Chen, Z Huang, X Hu et al. J. Org. Chem., 2011, 76:2338~2344. 

    56. [56]

      K W Quasdorf, X Tian, N K Garg. J. Am. Chem. Soc., 2008, 130:14422~14423. 

    57. [57]

      B T Guan, Y Wang, B J Li et al. J. Am. Chem. Soc., 2008, 130:14468~14470. 

    58. [58]

      Z Li, S L Zhang, Y Fu et al. J. Am. Chem. Soc., 2009, 131:8815~8823. 

    59. [59]

      X Hong, Y Liang, K N Houk. J. Am. Chem. Soc., 2014, 136:2017~2025. 

    60. [60]

      C H Basch, J Liao, J Xu et al. J. Am. Chem. Soc., 2017, 139:5313~5316. 

    61. [61]

      Q Zhou, H D Srinivas, S Dasgupta et al. J. Am. Chem. Soc., 2013, 135:3307~3310. 

    62. [62]

      M R Harris, L E Hanna, M A Greene et al. J. Am. Chem. Soc., 2013, 135:3303~3306. 

    63. [63]

      S C Shi, G R Meng, M Szostak. Angew. Chem. Int. Ed., 2016, 55:6959~6963. 

    64. [64]

      J Wang, T Qin, T G Chen et al. Angew. Chem. Int. Ed., 2016, 55:9676. 

    65. [65]

      A Chatupheeraphat, H H Liao, W Srimontree et al. J. Am. Chem. Soc., 2018, 140:3724~3735. 

    66. [66]

      L Guo, M Rueping. Acc. Chem. Res., 2018, 51:1185~1195. 

    67. [67]

      T B Boit, N A Weires, J Kim et al. ACS Catal., 2018, 8:1003~1008. 

    68. [68]

      N A Weires, E L Baker, N K Garg. Nat. Chem., 2016, 8:75~79. 

    69. [69]

      Z Y Xu, H Z Yu, Y Fu. Chem. Asian J., 2017, 12:1765~1772. 

    70. [70]

      S Q Zhang, B L H Taylor, C L Ji et al. J. Am. Chem. Soc., 2017, 139:12994~13005. 

    71. [71]

      Z T Ariki, Y Maekawa, M Nambo et al. J. Am. Chem. Soc., 2018, 140:78~81. 

    72. [72]

      Q Zhou, K M Cobb, T Tan et al. J. Am. Chem. Soc., 2016, 138:12057~12060. 

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    3. [3]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    4. [4]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    15. [15]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(73)
  • Abstract views(4490)
  • HTML views(1346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return