Citation: Zhang Feng. Catalytic Property and Mechanism of[Mn(salen)]2 Accelerated Degradation of Phenol Wastewater by Fenton Reaction[J]. Chemistry, ;2017, 80(9): 873-879. shu

Catalytic Property and Mechanism of[Mn(salen)]2 Accelerated Degradation of Phenol Wastewater by Fenton Reaction

  • Received Date: 20 February 2017
    Accepted Date: 20 June 2017

Figures(11)

  • The catalytic property for degradation of phenol wastewater using Fenton reaction of Schiff base manganese complexes{[MnⅢ(salen)(H2O)]2(ClO4)2, [Mn(salen)]2}was studied. The reaction characteristics and mechanism were analyzed by UV analysis, liquid chromatography, double reciprocal mapping and other analytical methods. The experimental results showed that the degradation efficiency of phenol of Fenton reaction is improved with the addition of Mn(salen)2 complex. It maintained a certain degradation ability under different pH systems or excess H2O2. Due to the high valence manganese intermediate, which is converted from the manganese ion in the complex, the oxidation of organic matter and the degradation efficiency have been accelerated. The activation energy of the degradation reaction was reduced by 35.9% after adding the complex into the Fenton system. The catalytic activity of[Mn(salen)]2 remained 60% after 7 times repeat uses.
  • 加载中
    1. [1]

      L Throop, M William. J. Hazard. Mater., 1975, 1(4):319~329. 

    2. [2]

      A M Klibanov, E D Morris, L M Felshin. Appl. Biochem., 1980, 4(2):414~421.

    3. [3]

      S Nakamoto, N Machida. Water Res., 1992, 26(1):49~54. 

    4. [4]

       

    5. [5]

      C Renzo, D Francesco. J. Environ. Chem. Eng., 2013, 1(10):1292~1300. 

    6. [6]

       

    7. [7]

      M Tokumura, R Morito, R Hatayama et al. Appl. Catal. B:Environ., 2011, 106(3~4):565~576. 

    8. [8]

      V Homem, A Alves, L Santos. Chem. Eng. J., 2013, 220:35~44. 

    9. [9]

      Y Segura, F Martínez, J A Melero et al. Appl. Catal. B:Environ., 2012, 113~114:100~106.

    10. [10]

      E Brillas, I Sirés, M A Oturan. Chem. Rev., 2009, 109(12):6570~6631. 

    11. [11]

      D Xiang, C Duan, X Tan. J. Chem. Soc. Dalton. Transac., 1998, (7):1201~1204.

    12. [12]

      Z Liao, X Zheng, B Luo et al. Polyhedron. 2001, 20:2813~2821. 

    13. [13]

      R L Rardin, W B Tolman, S Lippard. New J. Chem., 1991, 15:417~430.

    14. [14]

      N Reddig, D Pursche, A Rompel. Dalton Transac., 2004, 14:1474~1480. 

    15. [15]

      D D Cox, S J Benkovic, L M Bloom. J. Am. Chem. Soc., 1988, 110:8085~8092. 

    16. [16]

      H L Wang, W Z Liang, Q A Zhang et al. Chem. Eng. J., 2010, 164(1):115~120. 

    17. [17]

      T Zhou, Y Z Li, F S Wong et al. Ultrason. Sonochem., 2008, 15(5):782~790. 

    18. [18]

      M R A Silva, A G Trovo, R F P Nogueira. J. Photochem. Photobiol. A, 2007, 191(2~3):187~192. 

    19. [19]

      C P Bai, W S Xiao, D X Feng et al. Chem. Eng. J., 2013, 215:227~234. 

    20. [20]

    21. [21]

    22. [22]

      S Aurora, Y Pedro, R Sergio et al. Ind. Eng. Chem. Res., 2010, 49(2):5583~5587.

    23. [23]

       

    24. [24]

    25. [25]

    26. [26]

      T Rigg, W Taylor, J Weiss. J. Chem. Phys., 1954, 22(4):575~577. 

    27. [27]

      F Jacobsen, J Holcman, K Sehested. Int. J. Chem. Kinet., 1998, 30(3):207~214. 

    28. [28]

      B H J Bielski, D E Cabelli, R L Arudi et al. J. Phys. Chem. Ref. Data, 1985, 14:1041~1098. 

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    9. [9]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    10. [10]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    11. [11]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    14. [14]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    18. [18]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(13)
  • Abstract views(3321)
  • HTML views(574)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return