Citation: Chen Ying, Zhang Huilli, Liang Yuning. Research Progress in Photocatalytic Deep Denitrification Technology for Oil Products[J]. Chemistry, ;2018, 81(12): 1096-1103. shu

Research Progress in Photocatalytic Deep Denitrification Technology for Oil Products

  • Received Date: 10 May 2018
    Accepted Date: 16 September 2018

Figures(8)

  • Nitrogen compounds in oils affect oil stability, storage and transportation safety and secondary processing. In recent years, the denitrification of oil has become one of the research hotspots to solve environmental pollution and energy shortage problems. Although the technology of denitrification is mature, its cost and energy consumption are high. Photocatalytic denitrification has many advantages, such as safety, environmental friendliness, high stability, high catalytic activity and low energy consumption. This paper introduces the development process and research status of photocatalytic technology in the field of fuel oil denitrification, including carrier optimization and catalyst modification for metal oxide catalysts and molecular sieve catalyst systems. It is expected to provide reference for the preparation of novel modified nanophotocatalysts and their applications in the deep denitrification of oil products.
  • 加载中
    1. [1]

       

    2. [2]

      X H Gu, X F Mao, Y Zhao. J. Coal Sci. Eng., 2013, 19(1):83~89.

    3. [3]

      K Yooritphun, S Lilitchan, K Aryusuk et al. J. Am. Oil Chem. Soc., 2017, 94(2):301~308. 

    4. [4]

      A Fujishima, K Honda. Nature, 1972, 238(53/58):37~38.

    5. [5]

      L P Zheng, L Li, G Y Yan et al. Chin. J. Struct. Chem., 2013, 8:1131~1138.

    6. [6]

       

    7. [7]

      Y Bessekhouad, D Robert, J V Weber. Catal. Today, 2005, 101(3/4):315~321.

    8. [8]

      H Yang, X Li, Q Zhao et al. Environ. Sci. Technol., 2010, 44(13):5098~5103. 

    9. [9]

      L Huang, S Zhang, F Peng et al. Scripta Mater., 2010, 63(2):159~161. 

    10. [10]

      I Bedja, P V Kamat. J. Phys. Chem., 1995, 99:9182~9188. 

    11. [11]

       

    12. [12]

      K Vinodgopal, P V Kamt. Environ. Sci. Technol., 1995, 29:841~845. 

    13. [13]

      H Zhao, S Xu, J Zhong et al. Catal. Today, 2004, 93:857~861.

    14. [14]

      J R Heath. Science, 1995, 270(5240):1315~1316. 

    15. [15]

      G Williams, B Seger, P V Kamat. ACS Nano, 2008, 2(7):1487~1491. 

    16. [16]

      J W Shi, J Zheng, P Wu et al. Catal. Commun., 2008, 9(9):1846~1850. 

    17. [17]

      J W Shi, J T Zheng, X J Ji. Environ. Eng. Sci., 2010, 27(11):923~930. 

    18. [18]

      K Maeda, X Wang, Y Nishihara et al. J. Phys. Chem. C, 2009, 113(12):4940~4947. 

    19. [19]

       

    20. [20]

    21. [21]

      M A Ciciliati, M F Silva, D M Fernandes et al. Mater. Lett., 2015, 159:84~86. 

    22. [22]

      T Pandiyarajan, R Udayabhaskar, B Karthikeyan. Appl. Phys. A, 2012, 107(2):411~419. 

    23. [23]

      F L Xian. Int. J. Light Electron Optics, 2016, 127(5):3078~3081. 

    24. [24]

      C Y Kao, J D Liao, C W Chang et al. Appl. Surf. Sci., 2011, 258(5):1813~1818. 

    25. [25]

       

    26. [26]

      X Li, M Lu, A Wang et al. J. Phys. Chem. C 2008, 112(42):16584~16592. 

    27. [27]

       

    28. [28]

    29. [29]

      I I Abu, K J Smith. J. Catal., 2006, 241(2):356~366. 

    30. [30]

      S Wang, D Mao, X Guo et al. Catal. Commun., 2009, 10(10):1367~1370. 

    31. [31]

       

    32. [32]

      A Kargar, Y Jing, S J Kim et al. ACS Nano, 2013, 7(12):11112~11120. 

    33. [33]

       

    34. [34]

      T Xu, L Zhang, H Cheng et al. Appl. Catal. B, 2011, 101(3/4):382~387.

    35. [35]

    36. [36]

      A G Milnes, D L Feucht. Handaoutai Hitriro Setugou. Tokyo:Morikita Syubban, 1974.

    37. [37]

       

    38. [38]

       

    39. [39]

      M Long, W Cai, H Kisch. J. Phys. Chem. C, 2008, 112(2):548~554.

    40. [40]

    41. [41]

       

    42. [42]

       

    43. [43]

       

    44. [44]

      L P Zheng, G Y Yan, Y Y Huang et al. Mater. Res. Innov., 2014, 18(S4):26~29.

    45. [45]

      M S Gui, W D Zhang. J. Phys. Chem. Solids, 2012, 73:1342~1349. 

    46. [46]

      M Ou, Q Zhong, S Zhang et al. J. Alloys Compd., 2015, 626:401~409. 

    47. [47]

      W Liu, G Zhao, M An et al. Appl. Surf. Sci., 2015, 357:1053~1063. 

    48. [48]

      W Ma, Z Li, W Liu. Ceram. Int., 2015, 41(3):4340~4347. 

    49. [49]

      X Feng, W D Zhang, H Deng et al. J. Hazard. Mater., 2017, (322):223~232.

    50. [50]

      L Zheng, M Lin, Y Huang et al. China Pet. Process. Petrochem. Technol., 2013, 15(3):33~37.

    51. [51]

       

    52. [52]

      M Wang, C H Ye, Y Zhang et al. J. Cryst. Growth, 2006, 291(2):334~339. 

    53. [53]

       

    54. [54]

    55. [55]

  • 加载中
    1. [1]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    5. [5]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    12. [12]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    13. [13]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    14. [14]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(5)
  • Abstract views(179)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return