Citation:
Chen Ying, Zhang Huilli, Liang Yuning. Research Progress in Photocatalytic Deep Denitrification Technology for Oil Products[J]. Chemistry,
;2018, 81(12): 1096-1103.
-
Nitrogen compounds in oils affect oil stability, storage and transportation safety and secondary processing. In recent years, the denitrification of oil has become one of the research hotspots to solve environmental pollution and energy shortage problems. Although the technology of denitrification is mature, its cost and energy consumption are high. Photocatalytic denitrification has many advantages, such as safety, environmental friendliness, high stability, high catalytic activity and low energy consumption. This paper introduces the development process and research status of photocatalytic technology in the field of fuel oil denitrification, including carrier optimization and catalyst modification for metal oxide catalysts and molecular sieve catalyst systems. It is expected to provide reference for the preparation of novel modified nanophotocatalysts and their applications in the deep denitrification of oil products.
-
Keywords:
- Nitrogen removal from oil,
- Photocatalysts,
- Nano-modification
-
-
- [1]
-
[2]
X H Gu, X F Mao, Y Zhao. J. Coal Sci. Eng., 2013, 19(1):83~89.
-
[3]
K Yooritphun, S Lilitchan, K Aryusuk et al. J. Am. Oil Chem. Soc., 2017, 94(2):301~308.
-
[4]
A Fujishima, K Honda. Nature, 1972, 238(53/58):37~38.
-
[5]
L P Zheng, L Li, G Y Yan et al. Chin. J. Struct. Chem., 2013, 8:1131~1138.
- [6]
-
[7]
Y Bessekhouad, D Robert, J V Weber. Catal. Today, 2005, 101(3/4):315~321.
-
[8]
H Yang, X Li, Q Zhao et al. Environ. Sci. Technol., 2010, 44(13):5098~5103.
-
[9]
L Huang, S Zhang, F Peng et al. Scripta Mater., 2010, 63(2):159~161.
- [10]
- [11]
-
[12]
K Vinodgopal, P V Kamt. Environ. Sci. Technol., 1995, 29:841~845.
-
[13]
H Zhao, S Xu, J Zhong et al. Catal. Today, 2004, 93:857~861.
- [14]
-
[15]
G Williams, B Seger, P V Kamat. ACS Nano, 2008, 2(7):1487~1491.
-
[16]
J W Shi, J Zheng, P Wu et al. Catal. Commun., 2008, 9(9):1846~1850.
-
[17]
J W Shi, J T Zheng, X J Ji. Environ. Eng. Sci., 2010, 27(11):923~930.
-
[18]
K Maeda, X Wang, Y Nishihara et al. J. Phys. Chem. C, 2009, 113(12):4940~4947.
- [19]
-
[20]
-
[21]
M A Ciciliati, M F Silva, D M Fernandes et al. Mater. Lett., 2015, 159:84~86.
-
[22]
T Pandiyarajan, R Udayabhaskar, B Karthikeyan. Appl. Phys. A, 2012, 107(2):411~419.
-
[23]
F L Xian. Int. J. Light Electron Optics, 2016, 127(5):3078~3081.
-
[24]
C Y Kao, J D Liao, C W Chang et al. Appl. Surf. Sci., 2011, 258(5):1813~1818.
- [25]
-
[26]
X Li, M Lu, A Wang et al. J. Phys. Chem. C 2008, 112(42):16584~16592.
- [27]
-
[28]
- [29]
-
[30]
S Wang, D Mao, X Guo et al. Catal. Commun., 2009, 10(10):1367~1370.
- [31]
-
[32]
A Kargar, Y Jing, S J Kim et al. ACS Nano, 2013, 7(12):11112~11120.
- [33]
-
[34]
T Xu, L Zhang, H Cheng et al. Appl. Catal. B, 2011, 101(3/4):382~387.
-
[35]
-
[36]
A G Milnes, D L Feucht. Handaoutai Hitriro Setugou. Tokyo:Morikita Syubban, 1974.
- [37]
- [38]
-
[39]
M Long, W Cai, H Kisch. J. Phys. Chem. C, 2008, 112(2):548~554.
-
[40]
- [41]
- [42]
- [43]
-
[44]
L P Zheng, G Y Yan, Y Y Huang et al. Mater. Res. Innov., 2014, 18(S4):26~29.
-
[45]
M S Gui, W D Zhang. J. Phys. Chem. Solids, 2012, 73:1342~1349.
-
[46]
M Ou, Q Zhong, S Zhang et al. J. Alloys Compd., 2015, 626:401~409.
-
[47]
W Liu, G Zhao, M An et al. Appl. Surf. Sci., 2015, 357:1053~1063.
- [48]
-
[49]
X Feng, W D Zhang, H Deng et al. J. Hazard. Mater., 2017, (322):223~232.
-
[50]
L Zheng, M Lin, Y Huang et al. China Pet. Process. Petrochem. Technol., 2013, 15(3):33~37.
- [51]
-
[52]
M Wang, C H Ye, Y Zhang et al. J. Cryst. Growth, 2006, 291(2):334~339.
- [53]
-
[54]
-
[55]
-
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[2]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[3]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[4]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[5]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[6]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[7]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[8]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[9]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[10]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[11]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[12]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[13]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[14]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[16]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[17]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[18]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[19]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[20]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(180)
- HTML views(5)