Effect of chemical structure and sulfur speciation of high-sulfur coking coals on sulfur transformation during pyrolysis
- Corresponding author: WANG Mei-jun, wangmeijun@tyut.edu.cn
Citation:
SHEN Yan-feng, WANG Mei-jun, HU Yong-feng, KONG Jiao, BAO Wei-ren, CHANG Li-ping. Effect of chemical structure and sulfur speciation of high-sulfur coking coals on sulfur transformation during pyrolysis[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(2): 144-153.
YAO Qiu-xiang, DU Mei-li, WANG Shui-li, LIU Jing, YANG Jian-li, SHANG Hai-tao. Charateristics of sulfur forms transformation in high sulfur coal transformation[J]. Coal Convers, 2012,35(2):17-21. doi: 10.3969/j.issn.1004-4248.2012.02.004
LI Mei, YANG Jun-he, XIA Hong-bo, CHANG Hai-zhou, SUN Hui. Behavior of sulfur transformation during pyrolysis of high-sulfur coking coals[J]. Coal Convers, 2013,36(4):41-45. doi: 10.3969/j.issn.1004-4248.2013.04.010
LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui. XPS study on transformation of N-and S-functional groups during pyrolysis of high sulfur New Zealand coal[J]. J Fuel Chem Technol, 2013,41(11):1287-1293.
YAN J, YANG J, LIU Z. SH radical: The key intermediate in sulfur transformation during thermal processing of coal[J]. Environ Sci Technol, 2005,39(13):5043-5051. doi: 10.1021/es048398c
ZHANG G, DU Y, ZHANG Y, XU Y. Desulfurization reaction model and experimental analysis of high sulfur coal under hydrogen atmosphere[J]. J Ind Eng Chem, 2014,20(2):487-493.
CHEN H, LI B, YANG J, ZHANG B. Transformation of sulfur during pyrolysis and hydropyrolysis of coal[J]. Fuel, 1998,77(6):487-493. doi: 10.1016/S0016-2361(97)00275-5
GU Y, YPERMAN J, REGGERS G, CARLEER R, VANDEWIJNGAARDEN J. Characterisation of volatile organic sulphur compounds release during coal pyrolysis in inert, hydrogen and CO2 atmosphere[J]. Fuel, 2016,184:304-313. doi: 10.1016/j.fuel.2016.06.085
JORJANI E, YPERMAN J, CARLEER R, REZAI B. Reductive pyrolysis study of sulfur compounds in different Tabas coal samples (Iran)[J]. Fuel, 2006,85(1):114-120.
LIU Fen-rong, LI Wen, LI Bao-qing, BAI Zong-qing. Sulfur transformation during pyrolysis of Zunyi coal by atmosphere pressure-temperature programmed reduction-massspectrum[J]. JFuel Chem Technol, 2008,36(1):6-9. doi: 10.3969/j.issn.0253-2409.2008.01.002
SU Hai-qiang. Study and application of blending coking of Inner mongolia high sulfur coal[J]. Fuel Chem Process, 2011,42(3):43-44. doi: 10.3969/j.issn.1001-3709.2011.03.019
WEN Zeng-guang, DENG Tong. Practical exploration of coking with large proportion high sulfur coal using the existing equipment[J]. Coal Chem Ind, 2017,45(5):57-59. doi: 10.3969/j.issn.1005-9598.2017.05.014
ORREGO-RUIZ J, CABANZO R, MEJIA-OSPINO E. Study of colombian coals using photoacoustic fourier transform infrared spectroscopy[J]. Int J Coal Geol, 2011,85(3):307-310.
HE X, LIU X, NIE B, SUN D. FT-IR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017,206:555-563. doi: 10.1016/j.fuel.2017.05.101
IBARRA J, MOLINER R, BONET A J. FT-I.R. investigation on char formation during the early stages of coal pyrolysis[J]. Fue, 1994,73(6):918-924. doi: 10.1016/0016-2361(94)90287-9
IBARRA J, MU OZ E, MOLINER R. FT-IR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996,24(6/7):725-735.
LI K, KHANNA R, ZHANG J, BARATI M, LIU Z, XU T, YANG T, SAHAJWALLA V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques[J]. Energy Fuels, 2015,29(11):7178-7189. doi: 10.1021/acs.energyfuels.5b02064
LI X, HAYASHI J, LI C-Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a victorian brown coal[J]. Fuel, 2006,85(12/13):1700-1707.
HINRICHS R, BROWN M, VASCONCELLOS M, ABRASHEV M, KALKREUTH W. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy[J]. Int J Coal Geol, 2014,136:52-58. doi: 10.1016/j.coal.2014.10.013
MORGA R, JELONEK I, KRUSZEWSKA K. Relationship between coking coal quality and its micro-Raman spectral characteristics[J]. Int J Coal Geol, 2014,34/135:17-23.
BAYSAL M, YURUM A, YILDIZ B, YURUM Y. Structure of some western Anatolia coals investigated by FT-IR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction[J]. Int J Coal Geol, 2016,163:166-176. doi: 10.1016/j.coal.2016.07.009
GUEDES A, VALENTIM B, PRIETO A C, RODRIGUES S, NORONHA F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite[J]. Int J Coal Geol, 2010,83(4):415-422. doi: 10.1016/j.coal.2010.06.002
WANG M, HU Y, WANG J, CHANG L, WANG H. Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics[J]. J Anal Appl Pyrolysis, 2013,104(10):585-592.
SHEN Y, WANG M, HU Y, KONG J, WANG J, CHANG L, BAO W. Transformation and regulation of sulfur during pyrolysis of coal blend with high organic-sulfur fat coal[J]. Fuel, 2019,249:427-433.
PRIETZEL J, BOTZAKI A, TYUFEKCHIEVA N, BRETTHOLLE M, THIEME J, KLYSUBUN W. Sulfur speciation in soil by S K-Edge XANES spectroscopy: Comparison of spectral deconvolution and linear combination fitting[J]. Environ Sci Technol, 2011,45(7):2878-2886. doi: 10.1021/es102180a
LIU L, FEI J, CUI M, HU Y, WANG J. XANES spectroscopic study of sulfur transformations during co-pyrolysis of a calcium-rich lignite and a high-sulfur bituminous coal[J]. Fuel Process Technol, 2014,121:56-62. doi: 10.1016/j.fuproc.2013.12.008
WALDO G, MULLINS O, PENNER-HAHN J, CRAMER S. Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy[J]. Fuel, 1992,71(1):53-57.
YIN Hao, LIU Gui-jian, LIU Jing-jing. Release of sulfur containing gases during coal pyrolysis[J]. Environ Chem, 2012,31(3):330-334.
QIN Yue-qiang, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Effects of adding CaO on the release and transformation of arsenic and sulfur during coal pyrolysis[J]. J Fuel Chem Technol, 2017,45(2):147-156. doi: 10.3969/j.issn.0253-2409.2017.02.003
GUAN R, LI W, LI B. Effects of Ca-based additives on desulfurization during coal pyrolysis[J]. Fuel, 2003,82(15/17):1961-1966.
WANG B, ZHAO S, HUANG Y, ZHANG J. Effect of some natural minerals on transformation behavior of sulfur during pyrolysis of coal and biomass[J]. J Anal Appl Pyrolysis, 2014,105:284-294. doi: 10.1016/j.jaap.2013.11.015
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093
Yiming Liang , Ziyan Pan , Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Wen Shi , Zhangwen Wei , Mei Pan , Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
Zhiguang Xu , Xuan Xu , Qiong Luo , Ganquan Wang , Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112
Qiong Luo , Zhiguang Xu , Xuan Xu , Ganquan Wang , Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Qingfeng Zhang , Shang-E Wei , Hua Hou , Xuan Zhao , Zixuan Yang , Lin Zhuang . Construction and Reform of the Structural Chemistry Curriculum and Textbooks under the Chemistry “101 Plan”: an In-Depth Exploration for Cultivating Top-Notch Innovative Talents. University Chemistry, 2024, 39(10): 38-44. doi: 10.12461/PKU.DXHX202409047
Yuan Chun , Yongmei Liu , Fuping Tian , Hong Yuan , Shu'e Song , Wanchun Zhu , Yunchao Li , Zhongyun Wu , Xiaokui Wang , Yunshan Bai , Li Wang , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053