Citation: CHEN Wu-hua, WANG Ye-fei, DING Ming-chen, SHI Sheng-long, YANG Zhen. Properties of palm oil biodiesels derived from different alcohols[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1356-1362. shu

Properties of palm oil biodiesels derived from different alcohols

  • Corresponding author: CHEN Wu-hua, cwh8157@163.com
  • Received Date: 29 June 2016
    Revised Date: 14 September 2016

    Fund Project: the National Natural Science Foundation of China 51474235Program for Changjiang Scholars and Innovative Research Team in University IRT1294the National Natural Science Foundation of China 51206188

Figures(5)

  • The palm oil biodiesels with different ester alkyls were prepared through transesterification of palm oil with methanol, ethanol, isopropanol and isobutanol. The crystallization behavior and cold flow properties of the palm oil biodiesels were characterized by differential scanning calorimeter (DSC) and stress controlled rheometer; the effect of ester alkyl on certain important properties such as the oxidation stability, kinematic viscosity (40℃) and density (20℃) was then investigated. The results suggested that the palm oil biodiesels with larger ester alkyls exhibit lower crystal precipitation temperature and gelation point than those biodiesels with ester methyl; especially, the crystal precipitation temperature and gelation point for the palm oil biodiesel derived from isobutanol reach -2.57 and -8.09℃, respectively. An increase in the length of ester alkyl chain in alcohol moiety can significantly improve the cold flow properties of the palm oil biodiesels, by slightly prolonging the oxidation induction period and enhancing the oxidative stability. The palm oil biodiesels with different ester alkyls are also different in their kinematic viscosity and density; however, all these values can meet the requirement from the biodiesel standard of China.
  • 加载中
    1. [1]

      KNOTHE G, STEIDLEY K R. Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components[J]. Fuel, 2015,84(9):1059-1065.  

    2. [2]

      ATABANI A E, SILITONGA A S, BADRUDDIN I A, MAHLIA T M I, MASJUKI H H, MEKHILEF S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics[J]. Renew Sustainable Energy Rev, 2012,16(4):2070-2093. doi: 10.1016/j.rser.2012.01.003

    3. [3]

      MOSER B R. Biodiesel production, properties, and feedstocks[J]. In Vitro Cell Dev Biol Plant, 2009,45(3):229-266. doi: 10.1007/s11627-009-9204-z

    4. [4]

      ROBERT O D. Cold flow properties of soybean oil fatty acid monoalkyl ester admixtures[J]. Energy Fuels, 2009,23(8):4082-4091. doi: 10.1021/ef9002582

    5. [5]

      CHEN Xiu, YUAN Yin-nan, LAI Yong-bin, WANG Li-ping. Impact of composition and molecular structure upon the cold flow proprtties for biodiesel[J]. Acta Pet Sin (Pet Process Sect), 2009,25(5):673-677.  

    6. [6]

      CHEN Wu-hua, WANG Ye-fei, CHEN Jian. Gelling properties of biodiesel at low temperatures[J]. J Fuel Chem Technol, 2015,43(6):669-676.  

    7. [7]

      BAI Yu, LI Xue, ZHANG Liu-liu, WANG Yuan-tao, GU Quan-rong. Effect of modification of biodiesel by HZSM-5 zeolite on cold filter plug point[J]. J Fuel Chem Technol, 2009,37(1):53-57.  

    8. [8]

      CHEN B S, SUN Y Q, FANG J H, WANG J, JIANG W. Effect of cold flow improvers on flow properties of soybean biodiesel[J]. Biomass Bioenergy, 2010,34(9):1309-1313. doi: 10.1016/j.biombioe.2010.04.001

    9. [9]

      WANG J N, CAO L C, HAN S. Effect of polymeric cold flow improvers on cold flow properties of biodiesel from waste cooking oil[J]. Fuel, 2014,117(1):876-881.  

    10. [10]

      GENG Zai-xin, ZHANG Miao-juan, FU Li-li, JIANG Deng-gao. Study on the new synthetic technology of the branched-chain alcohol biodiesel with low freezing point[J]. J Chem Eng Chin Univ, 2012,26(6):1073-1076.  

    11. [11]

      MALINS K, KAMPARS V, KAMPARE R, PRILUCKA J, BRINKS J, MURNIEKS R, APSENIECE L. Properties of rapeseed oil fatty acid alkyl esters derived from different alcohols[J]. Fuel, 2014,137(4):28-35.  

    12. [12]

      NAINWAL S, SHARMA N, SHARMA A S, JAIN S, JAIN S. Cold flow properties improvement of Jatropha curcas biodiesel and waste cooking oil biodiesel using winterization and blending[J]. Energy, 2015,89:702-707. doi: 10.1016/j.energy.2015.05.147

    13. [13]

      LÜ Ya, LI Jun, OUYANG Fu-sheng. Effect of biodiesels blending on their low-temperature fluidity[J]. J Fuel Chem Technol, 2011,39(3):189-193.  

    14. [14]

      SERRANO M, OLIVEROS R, SÁNCHEZ M, MORASCHINI A, MARTÍNEZ M, ARACIL J. Influence of blending vegetable oil mwthyl esters on biodiesel fule properties:Oxidative stability and cold flow properties[J]. Energy, 2014,65(2):109-115.  

    15. [15]

      ROMANO S D, SORICHETTI P A. Dielectric Spectroscopy in Biodiesel Production and Characterization, Green Energy and Technology[M]. NewYork:Springer-Verlag London Limited, 2011:71-82.

    16. [16]

      XU Hui-hui. Study of oxidative atability of biodiesel[D]. Zhengzhou:Zhengzhou University, 2010.

    17. [17]

      PULLEN J, SAEED K. An overview of biodiesel oxidation stability[J]. Renewable Sustainable Energy Rev, 2012,16(8):5924-5950. doi: 10.1016/j.rser.2012.06.024

    18. [18]

      ZULETA E C, RIOS L A, BENJUMEA P N. Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends[J]. Fuel Process Technol, 2012,102(1):96-101.

    19. [19]

      NIMCEVIC D, PUNTIGAM R, WÖRGETTER M, GAPES R. Preparation of rapeseed oil esters of lower aliphatic alcohols[J]. J Am Oil Chem Soc, 2000,77(3):275-280. doi: 10.1007/s11746-000-0045-1

    20. [20]

      CHEN Wu-hua, CHEN Jian, JIANG Jin-xing, CHEN Ben-jun. Crystal precipitation law of biodiesel at low temperatures[J]. Pet Process Petrochem, 2014,45(3):14-17.  

    21. [21]

      REFAAT A A. Correlation between the chemical structure of biodiesel and its physical properties[J]. Int J Environ Sci Technol, 2009,6(4):677-694. doi: 10.1007/BF03326109

    22. [22]

      HOLMAN R A, ELMER O C. The rates of oxidation of unsaturated fatty acids and esters[J]. J Am Oil Chem Soc, 1947,24(4):127-129. doi: 10.1007/BF02643258

    23. [23]

      MOSER B R. Comparative oxidative stability of fatty acid alkyl esters by accelerated methods[J]. J Am Oil Chem Soc, 2009,86(7):699-706. doi: 10.1007/s11746-009-1376-5

  • 加载中
    1. [1]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    9. [9]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    10. [10]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    11. [11]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    19. [19]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(2)
  • Abstract views(812)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return