Citation: HUANG Tian-jiao, ZHANG Ya-ping, ZHUANG Ke, LU bin, ZHU Yi-wen, SHEN Kai. Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 319-327. shu

Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NOx

  • Corresponding author: ZHANG Ya-ping, amflora@seu.edu.cn
  • Received Date: 13 September 2017
    Revised Date: 11 December 2017

    Fund Project: National Key R&D Plan 2017YFB0603201Environmental Nonprofit Industry Research Subject 2016YFC0208102The project was Supported by the Key Research Program of Jiangsu Province(BE2015677), Environmental Nonprofit Industry Research Subject(2016YFC0208102)and National Key R&D Plan (2017YFB0603201)The project was Supported by the Key Research Program of Jiangsu Province BE2015677

Figures(7)

  • A series of honeycombed holmium-modified Fe-Mn/TiO2 catalysts were prepared by moulding method and their performance in the low temperature selective catalytic reduction (SCR) of NOx was investigated. The forming process was optimized as:the mass content of water in the forming additives is 40%, in which 10% structure strengthening agent (glass fiber), 5% binder (carboxymethyl cellulose), 10% squeezing agent (glycerin), 5% pore-forming agent (activated carbon) and a little lubricants (liquid paraffin) are added. The honeycombed Fe-Ho-Mn/TiO2 catalyst prepared under these conditions exhibits excellent performance in the low-temperature SCR of NOx; the conversion of NOx exceeds 90% at 120℃ and a good resistance to SO2 and H2O is observed when the content of SO2 in the stream is lower than 0.02%. The characterization results indicated that in comparison with the parent powder holmium-modified Fe-Ho-Mn/TiO2 catalyst, the honeycombed catalyst exhibits lower surface area, more particle aggregation, and less acid sites and Mn4+ species on the surface, which has a certain negative influence on the catalytic performance of Fe-Ho-Mn/TiO2.
  • 加载中
    1. [1]

      SHAN W, LIU F, HE H, SHI X, ZHANG C. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B:Environ, 2012,115:100-106.  

    2. [2]

      JIANG B, DENG B, ZHANG Z, WU Z, TANG X, YAO S, LU H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe-Mn/Ti catalysts[J]. J Phys Chem C, 2014,118(27):14866-14875. doi: 10.1021/jp412828p

    3. [3]

      DUNN J P, KOPPULA P R, STENGER H G, WACHS I E. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Appl Catal B:Environ, 1998,19(2):103-117. doi: 10.1016/S0926-3373(98)00060-5

    4. [4]

      BALLE P, GEIGER B, KURETI S. Selective catlytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust[J]. Appl Catal B:Environ, 2009,85(3/4):109-119.  

    5. [5]

      LI J, CHANG H, MA L, HAO J, YANG R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review[J]. Catal Today, 2011,175(1):147-156. doi: 10.1016/j.cattod.2011.03.034

    6. [6]

      SHEN B, LIU T, ZHAO N, YANG X, DENG L. Lron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci-China, 2010,22(9):1447-1454. doi: 10.1016/S1001-0742(09)60274-6

    7. [7]

      XIONG Zhi-bo, LU Chun-mei. Study on the modification of iron-cerium mixed oxide catalyst for selective catalytic reduction of NO[J]. J Fuel Chem Technol, 2013,41(3):361-367.  

    8. [8]

      QIAN Yi-jun, GUI Ke-ting, LIANG Hui. Performance of low-temperature selective catalytic reduction of NO over supported Fe-Ce catalysts[J]. J ENG THERMOPHYS-RUS, 2015(01):101-105.  

    9. [9]

      FAN Z, SHI J, GAO C, GAO G, WANG B, NIU C. Rationally designed porous MnOx-FeOx nanoneedles for low-temperature selective catalytic reduction of NOx by NH3[J]. ACS Appl Mater Inter, 2017,9(19):16117-16127. doi: 10.1021/acsami.7b00739

    10. [10]

      ZHANG Xin-li, LU Chun-mei, WANG Dong, XU Li-ting, PENG Jian-sheng. The effect of Fe on De-NOx activity of low-temperature SCR MnOx catalyst[J]. Boiler Technology, 2014(06):67-71. doi: 10.3969/j.issn.1672-4763.2014.06.014

    11. [11]

      MEKHEMER G. Surface acid-base properties of holmium oxide catalyst:In situ infrared spectroscopy[J]. APPL CATAL A-GEN, 2004,275(1/2):1-7.  

    12. [12]

      QIU Chun-tian, LIN Tao, ZHANG Qiu-lin, XU Hai-di, CHEN Yao-qiang, GONG Mao-chu. Selective catalytic reduction of NO with NH3 on modified ZrO2-MnO2 monolithic catalysts[J]. Chin J Catal, 2011,32(7):1227-1233.  

    13. [13]

      TANG Xiao-long, HAO Ji-ming, YI Hong-hong, NING Ping, LI Jun-hua. Selective catalytic reduction of NO with NH3 by monolithic catalyst MnOx/AC/C under low temperature in the presence of excess O2[J]. Chi Environ Sci, 2007,27(6):845-850.  

    14. [14]

      HUANG Hai-feng, ZHOU Xiao-yan, LU Han-feng, YU He, CHEN Yin-fei. Monolithic Mn/Ti-Si/cordierite catalyst prepared by In-situ deposition for SCR-DeNOx[J]. Proc CSEE, 2011,31(17):50-54.  

    15. [15]

      ZHU Y, ZHANG Y, XIAO R, HUANG T, SHEN K. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catal Commun, 2017,88:64-67. doi: 10.1016/j.catcom.2016.09.031

    16. [16]

      LIU Q Y, LIU Z Y, HUANG Z G, XIE G Y. A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas:Preparation and evaluation[J]. Catal Today, 2004,93:833-837.  

    17. [17]

      SHANG X, HU G, HE C, ZHAO J, ZHANG F, XU Y, ZHANG Y, LI J, CHEN J. Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant[J]. J IND ENG CHEM, 2012,18(1):513-519. doi: 10.1016/j.jiec.2011.11.070

    18. [18]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Appl Catal B:Environ, 1998,18(1/2):1-36.  

    19. [19]

      YASHNIK S A, ISMAGILOV Z R, KOPTYUG I V, ANDRIEVSKAYA I P, MATVEEV A, MOULIJIN J A. Formation of textural and mechanical properties of extruded ceramic honeycomb monoliths:An H-1 NMR imaging study[J]. Catal Today, 2005,105(3):507-515.  

    20. [20]

      LI Feng. Study of SCR catalyst for coal-fired flue gas denitrification grafted on nanometer titania[D]. Nanjing: Southeast University, 2006. )

    21. [21]

      KLIMCZAKM , KERN P, HEINZELMANN T, LUCAS M, CLAUS P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts Part I:V2O5-WO3/TiO2 catalysts[J]. Appl Catal B:Environ, 2010,95(1):39-47.  

    22. [22]

      KERN P, KLIMCZAKl M, HEINZELMANN T, LUCAS M, CLAUS P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part Ⅱ:Fe zeolite catalysts[J]. Appl Catal B:Environ, 2010,95(1):48-56.  

    23. [23]

      KHODAYARI R, ODENBRAND C. Selective catalytic reduction of NOx:A mathematical model for poison accumulation and conversion performance[J]. CHEM ENG SCI, 1999,54(12):1775-1785. doi: 10.1016/S0009-2509(99)00017-2

    24. [24]

      LI You. The Preparation Technology and performance evaluation of monolithic SCR catalyst[D]. Shanghai: East China University of Science and Technology, 2013. )

    25. [25]

      YU Guo-feng. Study on the Mn-Ce/TiO2 low-temperature SCR catalysts: Denitration performance and preparation method of honeycombed catalyst[D]. Hang zhou: Zhejiang University of Technology 2012. )

    26. [26]

      ZHANG Xiong-fei, XIE Fang-hua, WANG Wei, CHEN Xiao-ning, WANG Yu-xue. Study on the molding technology of clay honeycomb catalysts[J]. Guangzhou Chemical Industry, 2012(10):80-82. doi: 10.3969/j.issn.1001-9677.2012.10.031

    27. [27]

      MA Hao. The optimization of molded low-temperature SCR catalysts for NOx removal in cement kiln flue gas[D]. Hangzhou: Zhejiang University, 2015. )

    28. [28]

      XIAO Kun. Performance test and molding study of SCR catalyst[D]. Jinan: Shandong University, 2008. )

    29. [29]

      CHEN Fei. Studies on V2O5/TIO2 catalysts for ammoxidation of 3-Picoline[D]. Hangzhou: Zhejiang Normal University, 2008. )

    30. [30]

      SHEN B, YAO Y, MA H, LIU T. Ceria modified MnOx/TiO2-pillared cays catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chin J Catal, 2011,32(11/12):1803-1811.  

    31. [31]

      ZHANG Y, HUANG T, XIAO R, XU H, SHEN K, ZHOU C. A comparative study on the Mn/TiO2-M(M=Sn, Zr or Al) Ox catalysts for NH3-SCR reaction at low temperature[J]. Environ technol, 2017:1-11.  

    32. [32]

      XIONGY , TANG C, YAO X, ZHANG L, LI L, WANG X, DENG Y, GAO F, DONG L. Effect of metal ions doping (M=Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. APPL CATAL A-GEN, 2015,495:206-216. doi: 10.1016/j.apcata.2015.01.038

    33. [33]

      WANG X, LI X, ZHAO Q, SUN W, TADE M, LIU S. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2016,288:216-222. doi: 10.1016/j.cej.2015.12.002

    34. [34]

      LUO S, ZHOU W, XIE A, WU F, YAO C, LI X, ZUO S, LIU T. Effect of MnO2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2-Palygorskite[J]. CHEM ENG J, 2016,286:291-299. doi: 10.1016/j.cej.2015.10.079

    35. [35]

      TAN P. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane[J]. J CATA, 2016,338:21-29. doi: 10.1016/j.jcat.2016.01.027

    36. [36]

      FANG N, GUO J, SHU S, LUO H, CHU Y, LI J. Enhancement of low-temperature activity and sulfur resistance of Fe0.2 catalyst for NO removal by NH3-SCR[J]. CHEM ENG J, 2017,325:114-123. doi: 10.1016/j.cej.2017.05.053

    37. [37]

      LIU J, LIU J, ZHAO Z, WEI Y, SONG W, LI J, ZHANG X. A unique Fe/Beta@TiO2 core-shell catalyst by small-grain molecular sieve as the core and TiO2 nanosize thin film as the shell for the removal of NOx[J]. Ind Eng Chem Res, 2017,56(20):5833-5842. doi: 10.1021/acs.iecr.7b00740

    38. [38]

      LIU Shi-bin, WANG Xiu-guang, LI Yi-bing, HAO Xiao-gang, ZHANG Zhong-lin, DUAN Dong-hong, SUN Yan-ping. Performance of Pt-Ru/C Doped with Ho for methanol electro-catalytic oxidation[J]. RARE METAL MAT ENG, 2008(05):909-913. doi: 10.3321/j.issn:1002-185X.2008.05.037

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    4. [4]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    5. [5]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    15. [15]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(6)
  • Abstract views(1460)
  • HTML views(536)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return