Citation: Alessia Coletti, Federica Sabuzi, Barbara Floris, Pierluca Galloni, Valeria Conte. Efficient and sustainable V-catalyzed oxidative desulfurization of fuels assisted by ionic liquids[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1121-1129. shu

Efficient and sustainable V-catalyzed oxidative desulfurization of fuels assisted by ionic liquids

  • Corresponding author: Pierluca Galloni, p.galloni@bt-innovachem.com Valeria Conte, valeria.conte@uniroma2.it
  • Received Date: 14 June 2018
    Revised Date: 6 August 2018

    Fund Project: The project was supported by the University of Rome "Tor Vergata", SUSCARE project. Alessia Coletti and Federica Sabuzi contributed equally to the manuscript

Figures(3)

  • Fuel desulfurization is an appealing topic for the chemical industry since severe environmental regulations regarding SO2 emissions have been legislated in many countries. In order to reduce the amount of sulfur-containing compounds in fuels, responsible for high SOx emission levels, a green chemistry approach is compulsory. In this paper, vanadium salen and salophen complexes were used in the oxidation of a model aromatic sulfide, such as dibenzothiophene (DBT), in the presence of H2O2 as green oxidant. The oxidative process was successfully coupled with the extraction of the oxidized compounds by ionic liquids. The system resulted highly selective for sulfide oxidation, showing poor reactivity toward the oxidation of alkenes and allowing a significant reduction of S content in a model benzine. To note, the use of microwave in place of standard heating allowed to obtain 98% of DBT oxidation and almost complete sulfur extraction in the model fuel in 1000 s. For these reasons, this system was considered an easy, rapid and clean process to achieve fuel desulfurization.
  • 加载中
    1. [1]

      AL-DEGS Y S, EL-SHEIKH A H, AL BAKAIN R Z, NEWMAN A P, AL-GHOUTI M A. Conventional and upcoming sulfur-cleaning technologies for petroleum fuel:A review[J]. Energy Technol, 2016,4(6):679-699. doi: 10.1002/ente.201500475

    2. [2]

      KUMAR S, SRIVASTAVA V C, MADHUSUDAN NANOTI S. Extractive desulfurization of gas oils:A perspective review for use in petroleum refineries[J]. Sep Purif Rev, 2017,46(4):319-347. doi: 10.1080/15422119.2017.1288633

    3. [3]

      SHANG H, DU W, LIU Z, ZHANG H. Development of microwave induced hydrodesulfurization of petroleum streams:A review[J]. J Ind Eng Chem, 2013,19(4):1061-1069. doi: 10.1016/j.jiec.2012.12.044

    4. [4]

      BONIEK D, FIGUEIREDO D, DOS SANTOS A F B, DE RESENDE STOIANOFF M A. Biodesulfurization:A mini review about the immediate search for the future technology[J]. Clean Technol Environ Policy, 2015,17(1):29-37. doi: 10.1007/s10098-014-0812-x

    5. [5]

      MOHEBALI G, BALL A S. Biodesulfurization of diesel fuels-Past, present and future perspectives[J]. Int Bioterior Biodegrad, 2016,110:163-180. doi: 10.1016/j.ibiod.2016.03.011

    6. [6]

      YU M, ZHANG N, FAN L, ZHANG C, HE X, ZHENG M, LI Z. Removal of organic sulfur compounds from diesel by adsorption on carbon materials[J]. Rev Chem Eng, 2015,31(1):27-43.  

    7. [7]

      XUE M, WEN P, CHITRAKAR R, OOI K, FENG Q. Screening of inorganic adsorbents for selective adsorption of thiophene from model gasoline[J]. Sep Sci Technol, 2012,47(13):1926-1936. doi: 10.1080/01496395.2012.665116

    8. [8]

      QIN L, JIA X, YANG Y, LIU X. Porous carbon microspheres:An excellent support to prepare surface molecularly imprinted polymers for selective removal of dibenzothiophene in fuel oil[J]. Ind Eng Chem Res, 2016,55(6):1710-1719. doi: 10.1021/acs.iecr.5b02837

    9. [9]

      QIN L, SHI W, LIU W, YANG Y, LIU X, XU B. Surface molecularly imprinted polymers grafted on ordered mesoporous carbon nanospheres for fuel desulfurization[J]. RSC Adv, 2016,6(15):12504-12513. doi: 10.1039/C5RA23582K

    10. [10]

      AFZALINIA A, MIRZAIE A, NIKSERESHT A, MUSABEYGI T. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(Ⅱ)-based MOF as catalyst[J]. Ultrason Sonochem, 2017,34:713-720. doi: 10.1016/j.ultsonch.2016.07.006

    11. [11]

      BHADRA B N, YOON SONG J, KHAN N A, HWA JHUNG S. TiO2 containing carbon derived from a metal-organic framework composite:A highly active catalyst for oxidative desulfurization[J]. ACS Appl Mater Interfaces, 2017,9(36):31192-31202. doi: 10.1021/acsami.7b10336

    12. [12]

      WANG X S, LI L, LIANG J, HUANG Y B, CAO R. Boosting oxidative desulfurization of model and real gasoline over phosphotungstic acid encapsulated in metal-organic frameworks:The window size matters[J]. ChemCatChem, 2017,9(6):971-979. doi: 10.1002/cctc.v9.6

    13. [13]

      DAI C, ZHANG J, HUANG C, LEI Z. Ionic liquids in selective oxidation:Catalysts and solvents[J]. Chem Rev, 2017,117(10):6929-6983. doi: 10.1021/acs.chemrev.7b00030

    14. [14]

      JA'FARI M, EBRAHIMI S L, KHOSRAVI-NIKOU M R. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels:A critical review[J]. Ultrason Sonochem, 2018,40(A):955-968.  

    15. [15]

      ZHAO H, BAKER G A. Oxidative desulfurization of fuels using ionic liquids:A review[J]. Front Chem Sci Eng, 2015,9(3):262-279. doi: 10.1007/s11705-015-1528-0

    16. [16]

      ABRO R, ABDELTAWAB A A, AL-DEYAB S S, YU G, BASIT QAZI A, GAO S, CHEN X. A review of extractive desulfurization of fuel oils using ionic liquids[J]. RSC Adv, 2014,4(67):35302-35317. doi: 10.1039/C4RA03478C

    17. [17]

      IBRAHIM M H, HAYYAN M, HASHIM M A, HAYYAN A. The role of ionic liquids in desulfurization of fuels:A review[J]. Renewable Sustainable Energy Rev, 2017,76:1534-1549. doi: 10.1016/j.rser.2016.11.194

    18. [18]

      LI Y, ZHANG M, ZHU W, LI M, XIONG J, ZHANG Q, WEIA Y, LI H. One-pot synthesis and characterization of tungsten-containing meso-ceria with enhanced heterogenous oxidative desulfurization in fuels[J]. RSC Adv, 2016,6(73):68922-68928. doi: 10.1039/C6RA06081A

    19. [19]

      GONZÁLEZ-GARCÍA O, CEDE O-CAERO L. V-Mo based catalysts for oxidative desulfurization of diesel fuel[J]. Catal Today, 2009,48(1):42-48.  

    20. [20]

      GUO T, JIANG W, RUAN Y, DONG L, LIU H, LI H, ZHU W, LI H. Superparamagnetic Mo-containing core-shell microspheres for catalytic oxidative desulfurization of fuel[J]. Colloid Surface A, 2018,537:243-249. doi: 10.1016/j.colsurfa.2017.10.016

    21. [21]

      TOMSKII I S, VISHNETSKAYA M V, VAKHRUSHIN P A, TOMSKAYA L A. Oxidative desulfurization of straight-run diesel fraction on vanadium-molybdenum catalysts[J]. Petrol Chem, 2017,57(10):908-913. doi: 10.1134/S0965544117100188

    22. [22]

      ABDUL-KADHIM W, ASYRAK DERAMAN M, BAHARI ABDULLAH S, NIZAM TAJUDDIN S, YUSOFF M M, TAUFIQ-YAP Y H, RAHIM M H A. Efficient and reusable iron-zinc oxide catalyst for oxidative desulfurization of model fuel[J]. JECE, 2017,5(2):1645-1656.  

    23. [23]

      ZHAO R, WANG J, ZHANG D, SUN Y, HAN B, TANG N, WANG N, LI K. Biomimetic oxidative desulfurization of fuel oil in ionic liquids catalyzed by Fe (Ⅲ) porphyrins[J]. Appl Catal A:Gen, 2017,532:26-31. doi: 10.1016/j.apcata.2016.12.008

    24. [24]

      BANISHARIF F, DEHGHANI M R, CAMPOS-MARTIN J M. Oxidative desulfurization of diesel using vanadium-substituted dawson-type emulsion catalysts[J]. Energy Fuels, 2017,31(5):5419-5427. doi: 10.1021/acs.energyfuels.6b02791

    25. [25]

      CONTE V, FABBIANESI F, FLORIS B, GALLONI P, SORDI D, ARENDS I W C E, BONCHIO M, REHDER D, BOGDAL D. Vanadium-catalyzed, microwave-assisted oxidations with H2O2 in ionic liquids[J]. Pure Appl Chem, 2009,81(7):1265-1277. doi: 10.1351/PAC-CON-08-09-19

    26. [26]

      FLORIS B, SABUZI F, COLETTI A, CONTE V. Sustainable vanadium-catalyzed oxidation of organic substrates with H2O2[J]. Catal Today, 2017,285:49-56. doi: 10.1016/j.cattod.2016.11.006

    27. [27]

      MAURYA M R, ARYA A, KUMAR A, KUZNETSOV M L, AVECILLA F, COSTA PESSOA J. Polymer-bound oxidovanadium(iv) and dioxidovanadium(v) complexes as catalysts for the oxidative desulfurization of model fuel diesel[J]. Inorg Chem, 2010,49(14):6586-6600. doi: 10.1021/ic1004209

    28. [28]

      MOTA A, BUTENKO N, HALLETT J P, CORREIA I. Application of VO(acac)2 type complexes in the desulfurization of fuels with ionic liquids[J]. Catal Today, 2012,196(1):119-125. doi: 10.1016/j.cattod.2012.03.037

    29. [29]

      OGUNLAJA A S, ALADE O S, TSHENTU Z R. Vanadium(Ⅳ) catalysed oxidation of organosulfur compounds in heavy fuel oil[J]. C R Chim, 2017,20(2):164-168. doi: 10.1016/j.crci.2016.04.007

    30. [30]

      COLETTI A, GALLONI P, SARTOREL A, CONTE V, FLORIS B. Salophen and salen oxo vanadium complexes as catalysts of sulfides oxidation with H2O2:Mechanistic insights[J]. Catal Today, 2012,192(1):44-55. doi: 10.1016/j.cattod.2012.03.032

    31. [31]

      BERTINI S, COLETTI A, FLORIS B, CONTE V, GALLONI P. Investigation of VO-salophen complexes electronic structure[J]. J Inorg Biochem, 2015,147:44-53. doi: 10.1016/j.jinorgbio.2015.03.003

    32. [32]

      BIZZARRI C, CONTE V, FLORIS B, GALLONI P. Solvent effects of ionic liquids:Investigation of ferrocenes as electrochemical probes[J]. J Phys Org Chem, 2011,24(4):327-334. doi: 10.1002/poc.1759

    33. [33]

      LENTINI S, GALLONI P, GARCIA-BOSCH I, COSTAS M, CONTE V. Ionic liquids as reaction media in catalytic oxidations with manganese and iron pyridyl triazacyclononane complexes[J]. Inorg Chim Acta, 2014,410:60-64. doi: 10.1016/j.ica.2013.10.016

    34. [34]

      FLORIS B, SABUZI F, GALLONI P, CONTE V. The beneficial sinergy of MW irradiation and ionic liquids in catalysis of organic reactions[J]. Catalysts, 2017,7(9)261. doi: 10.3390/catal7090261

    35. [35]

      VEKARIYA R L. A review of ionic liquids:Applications towards catalytic organic transformations[J]. J Mol Liq, 2017,227:44-60. doi: 10.1016/j.molliq.2016.11.123

  • 加载中
    1. [1]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    2. [2]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    3. [3]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    4. [4]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    5. [5]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    8. [8]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    9. [9]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    10. [10]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    11. [11]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    12. [12]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    13. [13]

      Shilong LiLiang DuanQiusheng GaoHengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997

    14. [14]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    15. [15]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    16. [16]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    17. [17]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    18. [18]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    19. [19]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    20. [20]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

Metrics
  • PDF Downloads(11)
  • Abstract views(397)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return