Citation: YANG Tao, LIU Jin-jia, WANG Yan-dan, WEN Xiao-dong, SHEN Bao-jian. Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(9): 1113-1120. shu

Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface

  • Corresponding author: SHEN Bao-jian, baojian@cup.edu.cn
  • Received Date: 17 April 2018
    Revised Date: 27 July 2018

    Fund Project: the National Natural Science Foundation of China 21776304the National Natural Science Foundation of China 21473229The project was supported by the National Natural Science Foundation of China (21776304, 21473229, 91545121), the Shanxi Province Science Foundation for Youth (201601D021048) and from Synfuels China, Co. Ltdthe Shanxi Province Science Foundation for Youth 201601D021048the National Natural Science Foundation of China 91545121

Figures(6)

  • Density functional theory calculations were used to investigate CO2 adsorption behaviors on Fetet1-and Feoct2-terminated surface of Fe3O4 (111). The results indicated that on the Fetet1-terminated surface, the linear CO2 is favored at 1/5 monolayer (ML), whereas the bent CO2 bonded to surface O, i.e. carbonate structure, becomes possible at higher coverage. On the Feoct2-terminated surface, the bent CO2 is favored; both carbonate and carboxylate structure are formed at both 1/6 and 1/3 ML. Meanwhile, the Fetet1-terminated Fe3O4(111) surface has weak coverage effects, whereas the Feoct2-terminated Fe3O4(111) surface has strong coverage effects; the Feoct2-terminated surface is thermodynamically more favorable than the Fetet1-terminated surface for CO2 adsorption.
  • 加载中
    1. [1]

      GEUS W J. Preparation and properties of iron oxide and metallic iron catalysts[J]. Appl Catal A:Gen, 1986,25(1/2):313-333.  

    2. [2]

      RAO K R, HUGGINS F E, MAHAJAN V, HUFFMAN G P. Mossbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis[J]. Top Catal, 1995,2(1/4):71-78.  

    3. [3]

      ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser raman spectroscopy[J]. J Catal, 1985,95(1):325-332. doi: 10.1016/0021-9517(85)90038-7

    4. [4]

      RETHWISCH D G, DUMESIC J A. Adsorptive and catalytic properties of supported metal oxides Ⅲ. Water-gas shift over supported iron and zinc oxides[J]. J Catal, 1986,101(1):35-42. doi: 10.1016/0021-9517(86)90226-5

    5. [5]

      HUANG C S, XU L G, DAVIS B H. Fishcher-Tropsch synthesis:Impact of pretreatment of ultrafine iron oxide upon catalyst structure and selectivity[J]. Fuel Sci Technol Int, 1993,11(5/6):639-664.  

    6. [6]

      NEWSOME D S. The water-gas shift reaction[J]. Catal Rev Sci Eng, 1980,21(2):275-318. doi: 10.1080/03602458008067535

    7. [7]

      ZHANG C L, LI S, WANG L J, WU T H, PENG S Y. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite I. Preparation, characterization of magnetite, and its activity of decomposing carbon dioxide[J]. Mater Chem Phys, 2000,62(1):44-51. doi: 10.1016/S0254-0584(99)00169-8

    8. [8]

      ZHANG C L, LI S, WANG L J, WU T H, PENG S Y. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite Ⅱ. The effects of properties of magnetite on activity of decomposition CO2 and mechanism of the reaction[J]. Mater Chem Phys, 2000,62(1):52-61. doi: 10.1016/S0254-0584(99)00168-6

    9. [9]

      ZHU L, YAO K L, LIU Z L. First-principles study of the polar(111) surface of Fe3O4[J]. Phys Rev B, 2006,74(3)035409. doi: 10.1103/PhysRevB.74.035409

    10. [10]

      LI Y L, YAO K L, LIU Z L. Structure, stability and magnetic properties of the Fe3O4(110) surface:Density functional theory study[J]. Surf Sci, 2007,601(3):876-882. doi: 10.1016/j.susc.2006.10.037

    11. [11]

      PENTCHCHEVA R, WENDLER F, MEYERHEIM H L, MORITZ W, JEDRECY N, SCHEFFLER M. Jahn-Teller stabilization of a "Polar" metal oxide surface:Fe3O4(001)[J]. Phys Rev Lett, 2005,94(12)126101. doi: 10.1103/PhysRevLett.94.126101

    12. [12]

      HUANG D M, CAO D B, LI Y W, JIAO H J. Density function theory study of CO adsorption on Fe3O4(111) surface[J]. J Phys Chem B, 2006,110(28):13920-13925. doi: 10.1021/jp0568273

    13. [13]

      YANG T, WEN X D, HUO C F, LI Y W, WANG J G, JIAO H J. Carburization of the Fe3O4(111) Surface[J]. J Phys Chem C, 2007,112(16):6372-6379.  

    14. [14]

      PAYNE M C, ALLAN D C, ARIAS T A, JOANNOPOULOS J D. Iterative minimization techniques for ab initio total-energy calculations:Molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992,64(4):1045-1097. doi: 10.1103/RevModPhys.64.1045

    15. [15]

      MILMAN V, WINKLER B, WHITE J A, PICKARD C J, PAYNE M C, AKHMATASKAYA E V, NOBES R H. Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study[J]. Int J Quantum Chem, 2000,77(5):895-910. doi: 10.1002/(ISSN)1097-461X

    16. [16]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    17. [17]

      DUDAREV S L, BOTTON G A, SAVRASOV S Y, HUMPHREYS C J, SUTTON A P. Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study[J]. Phys Rev B, 1998,57(3):1505-1509. doi: 10.1103/PhysRevB.57.1505

    18. [18]

      MENG Y, LIU X W, HUO C F, GUO W P, CAO D B, PENG Q, ALBERT D, XAVIER G, YANG Y, WANG J G, JIAO H J, LI Y W, WEN X D. When density functional approximations meet iron oxides[J]. J Chem Theory Comput, 2016,12(10):5132-5144. doi: 10.1021/acs.jctc.6b00640

    19. [19]

      VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990,41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892

    20. [20]

      MONKHORST H J, PACK J D. Special points for Brillonin-zone integrations[J]. Phys Rev B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    21. [21]

      LOUIE S G, FROYEN S, COHEN M L. Nonlinear ionic pseudopotentials in spin-density-functional calculations[J]. Phys Rev B, 1982,26(4):1738-1742. doi: 10.1103/PhysRevB.26.1738

    22. [22]

      NAYAK S K, NOOIJEN M, BERNASEK S L. Electronic structure study of CO adsorption on the Fe(001) surface[J]. J Phys Chem B, 2001,105(1):164-172. doi: 10.1021/jp002314e

    23. [23]

      CHENG H S, REISER D B, DEAN S W JR, BAUMERT K. Structure and energetics of iron pentacarbonyl formation at an Fe(100) surface[J]. J Phys Chem B, 2001,105(50):12547-12552. doi: 10.1021/jp0155112

    24. [24]

      GE Q, JENKINS S J, KING D A. Localisation of adsorbate-induced demagnetisation:CO chemisorbed on Ni{110}[J]. Chem Phys Lett, 2000,327(3/4):125-130.  

    25. [25]

      WYCKOFF R W. Crystal Structures (Vol. 2)[M]. 2nd edition, 1982, p5.

    26. [26]

      SPENCER N D, SCHOONMAKER R C, SOMORJAI G A. Iron single crystals as ammonia synthesis catalysts:Effect of surface structure on catalyst activity[J]. J Catal, 1982,74(1):129-135. doi: 10.1016/0021-9517(82)90016-1

    27. [27]

      TOPSOE H, DUMESIC J A, BOUDART M. Alumina as a textural promoter of iron synthetic ammonia catalysts[J]. J Catal, 1973,28(3):477-488. doi: 10.1016/0021-9517(73)90141-3

    28. [28]

      LEMIRE C, MEYER R, HENRICH V E, SHAIKHUTDINOV S K, FREUND H J. The surface structure of Fe3O4(111) films as studied by CO adsorption[J]. Surf Sci, 2004,572(1):103-114. doi: 10.1016/j.susc.2004.08.033

    29. [29]

      CONDON N G, MURRAY P W, LEIBSLE F M, THORNTON G, LENNIE A R, VAUGHAN D J. Fe3O4(111) termination of α-Fe2O3(0001)[J]. Surf Sci, 1994,310(1/3):L609-L613.  

    30. [30]

      WEISS W, RANKE W. Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers[J]. Prog Surf Sci, 2002,70(1):1-151.  

    31. [31]

      SHAIKHUTDINOV S K, RITTER M, WANG X G, OVER H, WEISS W. Defect structures on epitaxial Fe3O4(111) films[J]. Phys Rev B, 1999,60(15/16):11062-11069.  

    32. [32]

      RITTER M, WEISS W. Fe3O4(111) surface structure determined by LEED crystallography[J]. Surf Sci, 1999,432(1/2):81-94.  

    33. [33]

      WANG S G, CAO D B, LI Y W, WANG J G, JIAO H J. Chemisorption of CO2 on nickel surfaces[J]. J Phys Chem B, 2005,109(40):18956-18963. doi: 10.1021/jp052355g

    34. [34]

      FREUND H J, MESSMER R P. On the bonding and reactivity of CO2 on metal surfaces[J]. Surf Sci, 1986,172(1):1-30. doi: 10.1016/0039-6028(86)90580-7

    35. [35]

      GOPEL W, ROCKER G. Localized and delocalized charge transfer during adsorption on semiconductors:Experiments and cluster calculations on the prototype surface ZnO(1010)[J]. J Vac Sci Technol, 1982,21(2):389-397. doi: 10.1116/1.571788

    36. [36]

      GOPEL W. Chemisorption and charge transfer at ionic semiconductor surfaces:Implication in desiging gas sensors[J]. Prog Surf Sci, 1985,20(1):9-103. doi: 10.1016/0079-6816(85)90004-8

    37. [37]

      RUNGE F, GOPEL W. Comparative study on the reactivity of polycrystalline and single crystal ZnO surfaces:O2 and CO2 interaction[J]. Z Phys Chem, 1980,123(2):173-192. doi: 10.1524/zpch.1980.123.2.173

    38. [38]

      HOTAN W, GOPEL W, HAUL R. Interaction of CO2 and CO with nonpolar Zinc oxide surfaces[J]. Surf Sci, 1979,83(1):162-180. doi: 10.1016/0039-6028(79)90486-2

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    5. [5]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    8. [8]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    9. [9]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    10. [10]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    13. [13]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    14. [14]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    15. [15]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    16. [16]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    19. [19]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(9)
  • Abstract views(660)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return