Citation: CHENG Xiang-long, WANG Yong-gang, ZHANG Rong, BI Ji-cheng. Effect of low temperature eutectics on coal ash fusion temperatures[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1043-1050. shu

Effect of low temperature eutectics on coal ash fusion temperatures

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 24 March 2016
    Revised Date: 3 June 2016

    Fund Project: the 12th Five-Year Plan of National Science and Technology Support 2012BAA04B02

Figures(10)

  • Coal ash fusion temperature is important for large-scale gasifier/boiler designers and operators. There has been a big error for fusion temperature calculated by chemical composition of coal ash because the ash is composed of minerals actually, which has a strong impact on fusion temperature. A new calculation method, based on chemical composition and low temperature eutectics of minerals being considered, is proposed, according to 59 typical coal samples from the central and western regions in China. The most predictive values are not far from preciseness with a mean error lower than 5%, when the calculation is employed to 108 coal samples. Meanwhile, a roughly sufficient judgment to identify the ash fusion temperature greater than 1 500℃ is suggested by formula, which is 0.9≤SiO2/A12O3≤1.8 and SiO2+A12O3≥78% with accuracy of 92.2% among 167 coal samples.
  • 加载中
    1. [1]

      LOWRY H H. Chemistry of Coal Utilization (Vol.1)[M]. New York: Wiley, 1945.

    2. [2]

      GHOSH S K. Understanding thermal coal ash behavior[J]. Min Eng, 1985,2:158-162.  

    3. [3]

      HIDERO U, SHOHEI T, TAKASHI T, SABURO I, SOGO S. Studies of the fusibility of coal ash[J]. Fuel, 1986,65(2):1505-1510.  

    4. [4]

      CHEN Wen-min, JIANG Ning. Predicting coal ash fusion temperature of Chinese coal based on the chemical composition[J]. Coal Process Compr Util, 1995(3):13-17.  

    5. [5]

      GRAY V R. Prediction of Ash fusion temperature from ash composition for some New Zealand coals[J]. Fuel, 1987,66(9):1230-1239. doi: 10.1016/0016-2361(87)90061-5

    6. [6]

      SONG W J, TANG L H, ZHU X D. Fusibility and flow properties of coal ash and slag[J]. Fuel, 2009,88(2):297-304. doi: 10.1016/j.fuel.2008.09.015

    7. [7]

      MARKUS R, MATHIAS K, MARCUS S, HEINER G. Relationship between ash fusion temperatures of ashes from hard coal, brown coal, and biomass and mineral phases under different atmospheres: A combined FactSageTM computational and network theoretical approach[J]. Fuel, 2015,151:118-123. doi: 10.1016/j.fuel.2015.01.036

    8. [8]

      LIU Y. P, WU M G, QIAN J X. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP Neural Network[J]. Thermochim Acta, 2007,454:64-68. doi: 10.1016/j.tca.2006.10.026

    9. [9]

      CHAKRAVARTY S, ASHOK M, AMIT B, RUCHIRA T, MANDAL G K, RAVIATHUL B M, MAMTA S. Composition, mineral matter characteristics and ash fusion behavior of some Indian coals[J]. Fuel, 2015,150:96-101. doi: 10.1016/j.fuel.2015.02.015

    10. [10]

      VASSILEV S V, KITANO K, TAKEDA S. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995,4(5):27-32.  

    11. [11]

      ZHANG Long, HUANG Zhen-yu, SHEN Ming-ke, WANG Zhi-hua, ZHOU Jun-hu. Effect of different regulative methods on coal ash fusion characteristics[J]. J Fuel Chem Technol, 2015,43(2):145-152.  

    12. [12]

      XU Jie, LIU Xia, ZHANG Qing, ZHAO Feng, GUO Qing-hua, YU Guang-suo, WANG Fu-chen. Research on ash fusibility and viscosity temperature characteristics of high-calcium Shanxin coal ash[J]. Proc CSEE, 2013,33(20):46-51.  

    13. [13]

      WEI Li-hong, MA Ting-ting, LI Run-dong YANG Tian-hua, LI Yan-ji, WEN Li-na. Effect of acidic compositions on ash fusion temperatures[J]. J Fuel Chem Technol, 2014,42(10):1206-1211.  

    14. [14]

      CHEN Long, ZHANG Zhong-xiao, WU Xiao-jiang, CHEN Guo-yan. An experiment study on ash fusibility under weak deoxidation atmosphere and oxidation atmosphere[J]. Power System Eng, 2007,23(1):22-24.  

    15. [15]

      MAO Yan-dong, JIN Ya-dan, LI Ke-zhong, BI Ji-cheng, LI Jin-lai, XIN Feng. Sintering behavior of different coal ashes in catalytic coal gasification process[J]. J Fuel Chem Technol, 2015,43(4):403-409.  

    16. [16]

      BAI Jin, LI Wen, LI Bao-qing. Mineral behavior in coal under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2006,34(3):292-297.  

    17. [17]

      DAI Bai-qian, WU Xiao-jiang, CHEN Yu-shuang, ZHANG Zhong-xiao. Experimental study and quantum chemistry calculation on coal ash fusion behavior and related mineral evolution mechanism[J]. J Chin Soc Power Eng, 2014,34(1):70-76.  

    18. [18]

      YANG Jian-guo, DENG Fu-rong, ZHAO Hong, CEN Ke-fa. Mineral conversion of coal ash in fusing process and the influence to ash fusion point[J]. Chin Soc Elec Eng, 2006,26(17):122-126.  

    19. [19]

      LI Fan, QIU Jian-rong, ZHENG Chu-guang. The effect of mineral matter in coal on the ash melting point with ternary phase diagram[J]. J Huazhong Univ Sci Technol, 1996,24(10):96-99.  

    20. [20]

      YAO Xing-yi. Research on the relation between chemical composition and ash fusion temperatures[J]. J Fuel Chem Technol, 1965,6(2):151-161.  

    21. [21]

      LIU B, HE Q H, JIANG Z H, XU R F, HU B X. Relationship between coal ash composition and ash fusion temperatures[J]. Fuel, 2013,105:293-300. doi: 10.1016/j.fuel.2012.06.046

    22. [22]

      VORRES K S. Effect of composition on melting behavior of coal ash[J]. J Eng Gas Turbines Power, 1979,101(4):497-499.  

    23. [23]

      SDARIYE K, AYSEGUL E M, HANZADE , H A, HALUK G, KEMAL U. Investigation of the relation between chemical composition and ash fusion temperatures for some Turkish lignites[J]. Fuel Sci Technol Int, 1993,11(9):1231-1249. doi: 10.1080/08843759308916127

    24. [24]

      YAO Xing-yi, WANG Wen-sen. Research on the formula of coal ash fusion temperature[J]. J Fuel Chem Technol, 1959,4(3):216-223.  

    25. [25]

      HUGGINS F E, KOSMACK D A, HUFFMAN G P. Correlation between ash fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel, 1981,60(7):577-584. doi: 10.1016/0016-2361(81)90157-5

    26. [26]

      SADRIYE K, AYSEGÜL E H, HANZADE H A, GUNER H, KEMAL U. Investigation of the relation between chemical composition and ash fusion temperatures for soke Turkish lignites[J]. Pet Sci Technol, 1993,9(11):1231-1249.  

    27. [27]

      WU Xiao-jiang, ZHANG Zhong-xiao, XU Xue-yuan, LIU Jian-bin, ZHANG Jian-wen. Experimental study on gasification and ash fusion characteristics of coal with high ash fusion temperature[J]. J Chin Soc Power Eng, 2011,31(7):557-562.  

    28. [28]

      WU Xiao-jiang, ZHANG Zhong-xiao, PIAO Gui-lin, KOBAYASHI Nobusuke, MORI Shigekatsu, ITATYA Yoshinori. Experimental study on gasification reaction characteristics of Chinese high ash fusion temperature coal with CO2 and steam at elevated temperature[J]. Chin Soc Elec Eng, 2007,27(32):24-28.

    29. [29]

      WANG Yi. The development and utilization of low rank coal with high ash/sulfur contents and high AFT from the Jincheng mining area[J]. Coal Chem Ind, 2011,39(5):1-4.  

    30. [30]

      ZHANG Min, WANG Hong-lin, ZHAO Xiao-peng, YANG Li-chao. Development of large-scale gasification technology for inferior coal in Shanxi and China with high ash melting point[J]. Mod Chem Ind, 2015(12):119-121.  

    31. [31]

      LI Xiao-min. Coal ash low temperature molten matrix formation characteristics under fluidized gasification[D]. Hangzhou: Zhejiang University, 2007.

    32. [32]

      GAO Na, LIU Sheng-hua, LIU Yong-jing, GUO Yan-hong. Effect of alkali oxides on ash melting characteristic[J]. Coal Convers, 2014(3):42-45.  

    33. [33]

      VASSILEVA C G, VASSILEV S V. Behaviour of inorganic matter during heating of Bulgarian coals. 2. Subbituminous and bituminous coals[J]. Fuel Process Technol, 2006,87(12):1095-1116. doi: 10.1016/j.fuproc.2006.08.006

  • 加载中
    1. [1]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    2. [2]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    3. [3]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    6. [6]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    7. [7]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    10. [10]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    11. [11]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    16. [16]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(0)
  • Abstract views(1181)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return