Citation: LIN Jun-heng, YANG Wen-shen, YIN Xiu-li, WU Chuang-zhi. Release of HCl and H2S during pyrolysis of aged refuse derived-fuels[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 152-160. shu

Release of HCl and H2S during pyrolysis of aged refuse derived-fuels

  • Corresponding author: YANG Wen-shen, yangws@ms.giec.ac.cn
  • Received Date: 19 November 2017
    Revised Date: 9 January 2018

    Fund Project: The project was supported by the National Key R&D Program of China (2016YFE0203300), the Guangdong Natural Science Foundation (2017B030308002) and the Science and Technology Program of Guangzhou (201707010242)the National Key R&D Program of China 2016YFE0203300the Guangdong Natural Science Foundation 2017B030308002the Science and Technology Program of Guangzhou 201707010242

Figures(7)

  • Based on the horizontal tubular reactor-chemical absorption together with TG-FTIR-MS methods, release characteristics of corrosive gases, viz., HCl and H2S, during pyrolysis of refuse derived-fuels were investigated. The effects of pyrolysis temperature and pyrolysis type on their release behaviors for the aged (ARDF) and normal (NRDF) categories were compared. Meanwhile, the occurrence properties of corrosive elements (Cl and S) in solid products were also explored. The results indicate that the release of each corrosive gas has similar characteristic temperature range for slow pyrolysis of two categories. The release of HCl occurs at 200-400 and 420-500℃, respectively, while the emission of H2S is observed at 230-370 and 380-670℃, respectively. In addition, ARDF has a lower emission amounts of both HCl and H2S compared to NRDF under this condition. With regard to fast pyrolysis, the release of corrosive gases show different regularities, which largely depends on pyrolysis temperature. With increasing temperature, the emission of HCl and H2S present a nonlinear and an increasing trends, respectively, reaching peak values at 850℃; It is 48.8% (ARDF) and 29.4% (NRDF) for HCl, 6.8% (ARDF) and 44.6% (NRDF) for H2S. Subsequently, due to the distinctive release characteristics of corrosive gases, the occurrence of corrosive elements in solid phase relating to temperature differs in two categories. The retained amounts of Cl and S reach to 59.4% (450℃) and 84.3% (750℃) for ARDF, respectively. But for NRDF, that is 36.7% (850℃) and 15.2% (650℃), repetitively. It can be inferred that ARDF has the more stable corrosive elements difficult to be released into gases, which could provide some guidelines on thermal utilization of refuse derived-fuels.
  • 加载中
    1. [1]

      "The 13th Five-Year Plan" construction planning for harmless treatment facilities of national municipal wastes[R]. Beijing: Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2016.

    2. [2]

      LI Hua, ZHAO You-cai. The exploitation of stabilizing solid waste and the utilization analysis for the land of landfill site[J]. Environ Sanit Eng, 2000,8(2):56-57+61.  

    3. [3]

      ZHAO You-cai, CHAI Xiao-li, NIU Dong-jie. Characteristics of aged refuse in closed refuse landfill in Shanghai[J]. J Tongji Univ (Nat Sci), 2006,34(10):1360-1364. doi: 10.3321/j.issn:0253-374X.2006.10.017

    4. [4]

      ZHAO Y C, WANG L C, HUA R H, XU D M, GU G W. A comparison of refuse attenuation in laboratory and field scale lysimeters[J]. Waste Manage, 2002,22(1):29-35. doi: 10.1016/S0956-053X(01)00028-9

    5. [5]

      COMMISSION E. Council Directive 99/31/EC of 26 April 1999 on the landfill of waste (Landfill Directive)[EB]. 1999.

    6. [6]

      BOSMANS A, VANDERREYDT I, GEYSEN D, HELSEN L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining:a technology review[J]. J Clean Prod, 2013,55(14):10-23.  

    7. [7]

      ROTHEUT M, QUICKER P. Energetic utilisation of refuse derived fuels from landfill mining[J]. Waste Manage, 2017,62:101-117. doi: 10.1016/j.wasman.2017.02.002

    8. [8]

      CHALERMCHAROENRAT S, LAOHALIDANOND K, KERDSUWAN S. Optimization of combustion behavior and producer gas quality from reclaimed landfill through highly densify RDF-gasification[J]. Energy Procedia, 2015,79:321-326.  

    9. [9]

      KAEWPENGKROW P, ATONG D, SRICHAROENCHAIKUL V. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst[J]. Environ Technol, 2012,33(22/24):2489-2495.  

    10. [10]

      YUAN Hao-ran, LU Tao, XIONG Zu-hong, HUANG Hong-yu, KOBAYASHI Noriyuki, CHEN Yong, LI Zhi-qiang. Advance in pyrolysis and gasification of municipal solid waste study[J]. Chem Ind Eng Prog, 2012,31(2):421-427.  

    11. [11]

      PAN T J, GESMUNDO F, NIU Y. Corrosion behavior of three iron-based model alloys in reducing atmospheres containing HCl and H2S at 600℃[J]. Corros Sci, 2007,49(3):1362-1377. doi: 10.1016/j.corsci.2006.06.014

    12. [12]

      HU H, FANG Y, LIU H, YU R, LUO G, LIU W, LI A, YAO H. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014,97(1):102-107.  

    13. [13]

      YUAN G, CHEN D, YIN L, WANG Z, ZHAO L, WANG J Y. High efficiency chlorine removal from polyvinyl chloride (PVC) pyrolysis with a gas-liquid fluidized bed reactor[J]. Waste Manage, 2014,34(6):1045-1050. doi: 10.1016/j.wasman.2013.08.021

    14. [14]

      ZHU H M, JIANG X G, YAN J H, CHI Y, CEN K F. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrolysis, 2008,82(1):1-9.  

    15. [15]

      LANE D J, VAN EYK P J, ASHMAN P J, KWONG C W, DE NYS R, ROBERTS D A, COLE A J, LEWIS D M. Release of Cl, S, P, K, and Na during thermal conversion of algal biomass[J]. Energy Fuels, 2015,29(4):2542-2554. doi: 10.1021/acs.energyfuels.5b00279

    16. [16]

      WILLIAMS E A, WILLIAMS P T. The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor[J]. J Chem Technol Biot, 1997,70(1):9-20. doi: 10.1002/(ISSN)1097-4660

    17. [17]

      YU J, SUN L, MA C, QIAO Y, YAO H. Thermal degradation of PVC:A review[J]. Waste Manage, 2016,48:300-314. doi: 10.1016/j.wasman.2015.11.041

    18. [18]

      ZHOU H, WU C, ONWUDILI J A, MENG A, ZHANG Y, WILLIAMS P T. Influence of process conditions on the formation of 2-4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride[J]. Fuel Process Technol, 2016,144(Supplement C):299-304.  

    19. [19]

      MENG N, JIANG D, LIU Y, GAO Z, CAO Y, ZHANG J, GU J, HAN Y. Sulfur transformation in coal during supercritical water gasification[J]. Fuel, 2016,186:394-404. doi: 10.1016/j.fuel.2016.08.097

    20. [20]

      XU L, YANG J L, LI Y M, LIU Z Y. Behavior of organic sulfur model compounds in pyrolysis under coal-like environment[J]. Fuel Process Technol, 2004,85(8/10):1013-1024.  

    21. [21]

      RUAN Song-bin. Discussion about means and process of country towns domestic waste treatment in Guangxi[J]. Environ Sanit Eng, 2008,16(1):27-30.  

    22. [22]

      SINGH S, WU C, WILLIAMS P T. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques[J]. J Anal Appl Pyrolysis, 2012,94:99-107. doi: 10.1016/j.jaap.2011.11.011

    23. [23]

      HOTOV G, SLOV K V. Quantitative TG-MS analysis of evolved gases during the thermal decomposition of carbon containing solids[J]. Thermochim Acta, 2016,632(Supplement C):23-28.  

    24. [24]

      GUO X E, YANG X L, LI H, WU C Z, CHEN Y, LI F, XIE K C. Release of hydrogen chloride from combustibles in municipal solid waste[J]. Environ Sci Technol, 2001,35(10):2001-2005. doi: 10.1021/es991208r

    25. [25]

      QIAN Xiao-qing, NIU Dong-jie, LOU Zi-yang, ZHAO You-cai. Development of resource comprehensive application study on mineralized waste in landfill Site[J]. Environ Sanit Eng, 2006,14(2):62-64.  

    26. [26]

      S RUM L, GR NLI M G, HUSTAD J E. Pyrolysis characteristics and kinetics of municipal solid wastes[J]. Fuel, 2001,80(9):1217-1227.  

    27. [27]

      WANG X, SI J, TAN H, MA L, POURKASHANIAN M, XU T. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw[J]. Energy Fuels, 2010,24(9):5215-5221. doi: 10.1021/ef1007215

    28. [28]

      EFIKA E C, ONWUDILI J A, WILLIAMS P T. Products from the high temperature pyrolysis of RDF at slow and rapid heating rates[J]. J Anal Appl Pyrolysis, 2015,112(Supplement C):14-22.  

    29. [29]

      DU Sheng-Lei, CHEN Hai-ping, XU Guang-fu, WNAG Xian-hua, ZHANG Shi-hong. Transformation behavior of F and Cl during biomass pyrolysis[J]. Proc CSEE, 2010, 30(14):115-120.

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    18. [18]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    19. [19]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(7)
  • Abstract views(3368)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return