Citation: Kong Yong. Research Advances of N-Heterocyclic Carbene Ligands in Polymerization[J]. Chemistry, ;2020, 83(9): 792-798. shu

Research Advances of N-Heterocyclic Carbene Ligands in Polymerization

  • Received Date: 2 March 2020
    Accepted Date: 7 May 2020

Figures(21)

  • N-heterocyclic carbene ligands have attracted extensive attention due to their excellent catalytic performance, and have been widely utilized in a variety of olefin polymerization reactions. According to the recent reports, N-heterocyclic carbene were briefly introduced, firstly. The recent research advances of the application in ring-opening metathesis polymerization, olefin coordination polymerization, atom transfer radical polymerization, and other polymerization were focused on. The development trends of N-heterocyclic carbene ligands in polymerization were also prospected.
  • 加载中
    1. [1]

      Arduengo Ⅲ A J. Acc. Chem. Res., 1999, 32 (11): 913~921. 

    2. [2]

      Hopkinson M N, Richter C, Schedler M, et al. Nature, 2014, 510(7506): 485~496. 

    3. [3]

      Zhukhovitskiy A V, MacLeod M J, Johnson J A. Chem. Rev., 2015, 115(20): 11503~11532. 

    4. [4]

      Samojłowicz C, Bieniek M, Grela K. Chem. Rev., 2009, 109(8): 3708~3742. 

    5. [5]

      Díez-González S, Marion N, Nolan S P. Chem. Rev., 2009, 109(8): 3612~3676. 

    6. [6]

      Schuster O, Yang L, Raubenheimer H G, et al. Chem. Rev., 2009, 109(8): 3445~3478. 

    7. [7]

    8. [8]

      Aldeco-Perez E, Rosenthal A J, Donnadieu B, et al. Science, 2009, 326: 556~559. 

    9. [9]

      Soleilhavoup M, Bertrand G. Acc. Chem. Res., 2015, 48(2): 256~266. 

    10. [10]

      Jin L, Melaimi M, Kostenko A, et al. Chem. Sci., 2016, 7(1): 150~154. 

    11. [11]

      Peris E. Chem. Rev., 2018, 118(19): 9988~10031. 

    12. [12]

      Zhao Q, Meng G, Nolan S P, et al. Chem. Rev., 2020, 120(4): 1981~2048. 

    13. [13]

      Arevalo R, Chirik P J. J. Am. Chem. Soc., 2019, 141(23): 9106~9123. 

    14. [14]

      Doddi A, Peters M, Tamm M. Chem. Rev., 2019, 119(12): 6994~7112. 

    15. [15]

    16. [16]

       

    17. [17]

      Ogba O M, Warner N C, O’Leary D J, et al. Chem. Soc. Rev., 2018, 47(12): 4510~4544. 

    18. [18]

      Xia Y, Boydston A J, Grubbs R H. Angew. Chem. Int. Ed., 2011, 50(27): 5882~5885.

    19. [19]

      Su Y, Xu L, Xu X, et al. Macromolecules, 2020, 53(8): 3224~3233. 

    20. [20]

      Self J L, Sample C S, Levi A E, et al. J. Am. Chem. Soc., 2020, 142(16): 7567~7573. 

    21. [21]

      Dang L, Song H, Wang B. Organometallics, 2014, 33(23): 6812~6818 

    22. [22]

      Yasuda H, Nakano R, Ito S, et al. J. Am. Chem. Soc., 2018, 140(5): 1876~1883. 

    23. [23]

      Lin T, Chang A B, Chen H, et al. J. Am. Chem. Soc., 2017, 139(10): 3896~3903. 

    24. [24]

      Vehlow K, Wang D, Buchmeiser M R, et al. Angew. Chem. Int. Ed., 2008, 47(14): 2615~2618. 

    25. [25]

      Lichtenheldt M, Wang D, Vehlow K, et al. Chem. Eur. J., 2009, 15(37): 9451~9457. 

    26. [26]

      Vougioukalakis G C, Grubbs R H. Chem. Rev., 2010, 110(3): 1746~1787. 

    27. [27]

      Delaude L, Demonceau A, Noels A F. Chem. Commun., 2001, (12): 1127~1128. 

    28. [28]

      Wang D, Wurst K, Knolle W, et al. Angew. Chem. Int. Ed., 2008, 47 (17): 3267~3270. 

    29. [29]

      Kong Y, Song H, Xu S, et al. Organometallics, 2012, 31(15): 5527~5532. 

    30. [30]

      Li M, Song H, Wang B. Organometallics, 2015, 34(10): 1969~1977. 

    31. [31]

      Kong Y, Tang Y, Wang Z, et al. Macromol. Chem. Phys., 2013, 214(4): 492~498. 

    32. [32]

      Yang D, Tang Y, Song H, et al. Organometallics, 2015, 34(10): 2012~2017. 

    33. [33]

      Yang D, Tang Y, Song H, et al. Organometallics, 2016, 35(10): 1392~1398 

    34. [34]

    35. [35]

       

    36. [36]

      Wang B, Wang D, Cui D, et al. Organometallics, 2007, 26(13): 3167~3172. 

    37. [37]

      Despagnet-Ayoub E, Takase M K, Henling L M, et al. Organometallics, 2015, 34(19): 4707~4716. 

    38. [38]

      Dagorne S, Bellemin-Laponnaz S, Romain C. Organometallics, 2013, 32(9): 2736~2743. 

    39. [39]

      Wang B, Cui D, Lv K. Macromolecules, 2008, 41(6): 1983~1988. 

    40. [40]

      Lv K, Cui D. Organometallics, 2008, 27(21): 5438~5440. 

    41. [41]

      Wang B, Tang T, Li Y, et al. Dalton Transac., 2009, (41): 8963~8969.

    42. [42]

      Aihara H, Matsuo T, Kawaguchi H. Chem. Commun., 2003, (17): 2204~2205. 

    43. [43]

      Zhang D, Aihara H, Watanabe T, et al. J. Organomet. Chem., 2007, 692 (1/3): 234~242.

    44. [44]

      Bocchino C, Napoli M, Costabile C, et al. J. Polym. Sci., Part A, 2011, 49 (4): 862~870. 

    45. [45]

      McGuinness D S, Gibson V C, Steed J W. Organometallics, 2004, 23(26): 6288~6292. 

    46. [46]

      Kreisel K A, Yap G P A, Theopold K H. Organometallics, 2006, 25 (19): 4670~4679. 

    47. [47]

      McGuinness D S, Suttil G A, Gardine M Gr, et al. Organometallics, 2008, 27 (16): 4238~4247. 

    48. [48]

      Wang X, Liu S, Jin G X. Organometallics, 2004, 23(25): 6002~6007. 

    49. [49]

      Wang X, Liu S, Weng L H, et al. Organometallics, 2006, 25(15): 3565~3569. 

    50. [50]

      Ketz B E, Ottenwaelder X G, Waymouth R M. Chem. Commun., 2005, (45): 5693~5695.

    51. [51]

      Benson S, Payne B, Waymouth R M. J. Polym. Sci. A, 2007, 45(16): 3637~3647. 

    52. [52]

      Sun H M, Shao Q, Hu D M, et al. Organometallics, 2005, 24(2): 331~334. 

    53. [53]

      Li W, Sun H, Chen M, et al. Organometallics, 2005, 24(24): 5925~5928. 

    54. [54]

      Sujith S, Noh E K, Lee B Y, et al. J. Organomet. Chem., 2008, 693(12): 2171~2176. 

    55. [55]

       

    56. [56]

       

    57. [57]

      Nakano R, Nozaki K. J. Am. Chem. Soc., 2015, 137(34): 10934~10937. 

    58. [58]

      Tao W, Nakano R, Ito S, et al. Angew. Chem. Int. Ed., 2016, 55(8): 2835~2839. 

    59. [59]

      Akita S, Nakano R, Ito S, et al. Organometallics, 2018, 37(14): 2286~2296. 

    60. [60]

      Waltman A W, Ritter T, Grubbs R H. Organometallics, 2006, 25 (18): 4238~4239. 

    61. [61]

      Waltman A W, Grubbs R H. Organometallics, 2004, 23(13): 3105~3107. 

    62. [62]

      Kong Y, Ren H, Xu S, et al. Organometallics, 2009, 28(20): 5934~5940. 

    63. [63]

       

    64. [64]

      Kong Y, Cheng M, Ren H, et al. Organometallics, 2011, 30(6): 1677~1681. 

    65. [65]

      Kong Y, Wen L, Song H, et al. Organometallics, 2011, 30(1), 153~159.

    66. [66]

      Dong J, Li M, Wang B. Organometallics, 2019, 38(19): 3786~3795. 

    67. [67]

      Louie J, Grubbs R H. Chem. Commun., 2000, (16): 1479~1480.

    68. [68]

      Sauvage X, Borguet Y, Noels A F, et al. Adv. Synth. Catal., 2007, 349(1/2): 255~265.

    69. [69]

      Melis K, Verpoort F. J. Mol. Catal. A, 2003, 201(1/2): 33~41.

    70. [70]

      Zhang Y, Wang D, Wurst K, et al. J. Organomet. Chem., 2005, 690(24/25): 5728~5735.

    71. [71]

      Csabai P, Joo F, Trzeciak A M, et al. J. Organomet. Chem., 2006, 691(15): 3371~3376. 

    72. [72]

      Patel D, Liddle S T, Mungur S A, et al. Chem. Commun., 2006, (10): 1124~1126.

    73. [73]

      Romain C, Brelot L, Bellemin-Laponnaz S, et al. Organometallics, 2010, 29(5): 1191~1198. 

    74. [74]

      Okuyama K I, Sugiyama J I, Nagahata R, et al. Macromolecules, 2003, 36(19): 6953~6955. 

    75. [75]

      Okuyama K I, Sugiyama J I, Nagahata R, et al. Green Chem., 2003, 5(5): 563~566. 

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    7. [7]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    10. [10]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    11. [11]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(33)
  • Abstract views(3400)
  • HTML views(981)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return