Citation: Wang Guixia, Zhang Zhouyang, Liu Peng, Liao Peihai, Kong Xiangfei. Progress in the Syntheses of 4-Chromanone Derivatives with Bioactivities[J]. Chemistry, ;2017, 80(4): 322-328. shu

Progress in the Syntheses of 4-Chromanone Derivatives with Bioactivities

  • Corresponding author: Kong Xiangfei, xiangfei.kong@glut.edu.cn
  • Received Date: 20 July 2016
    Accepted Date: 15 November 2016

Figures(4)

  • 4-Chromanone derivatives are widespread in nature, most of them have biological activities. 4-Chromanone derivatives with bioactivities are chiral compounds, especially C2. The asymmetric synthesis of these compounds has attracted great attention. The key step of synthesizing of 4-chromanone derivatives is to control the synthesis of C2 chiral center. In this paper, based on the different synthesis routes, various methods of synthesizing C2 (racemic or chiral)-4-chromanone derivatives in recent years were summarized, and the reaction characteristics of synthesizing C2 (chiral)-4-chromanone derivatives were discussed.
  • 加载中
    1. [1]

    2. [2]

      S Ramadas, G L Krupadanam. Tetrahedron: Asym. 2004, 15: 3381~3391. 

    3. [3]

      (a) T Korenaga, K Hayashi, T Sakai et al. Org. Lett., 2011, 13: 2022~2025; (b) D Q Sun, G Julian. Chem. Med. Chem., 2012, 7: 1541~1545.

    4. [4]

      U Albrecht, M Lalk, P Langer. Bioorg. Med. Chem., 2005, 13: 1531~1536. 

    5. [5]

      (a) D Sun, J G Hurdle, R Lee et al. Chem. Med. Chem., 2012, 7(9): 1541~1545; (b) V S Kamat, F Y Chuo, K Nakanishi. Heterocycles, 1981, 15: 1163~1170.

    6. [6]

      R S Keri, S Budagumpi, R K Pai. Eur. J. Med. Chem., 2014, 78: 340~374. 

    7. [7]

      M Friden-Saxin, T Seifert, K Luthman. J. Med. Chem., 2012, 55: 7104~7113.

    8. [8]

      (a) H M Merken, G R Beecher et al. J. Agric. Food Chem., 2000, 48: 577~599; (b) H Y Chen, K D Dykstra, E T Birzin et al. Bioorg. Med. Chem. Lett., 2004, 14: 1417~1421; (c) M A Terzidis, J Stephanidou, C A Tsoleridis. J. Org. Chem., 2010, 75: 1948~1955; (d) N X Wang, Y L Xing, Y J Wang. Curr. Org. Chem., 2013, 17 (14): 1555~1562; (e) L Feng, M M Maddox, M Z Alam et al. J. Med. Chem., 2014, 57: 8398~8420.

    9. [9]

      (a) M E Bellizzi, A V Bhatia, C C Steven et al. Org. Proce. Res. Dev., 2014, 18: 303~309; (b) S Ghosh, N B Chandar. Synlett, 2014, 25: 2649~2653; (c) T Rosenau, A Potthast. Org. Lett., 2002, 4(8): 1257~1258.

    10. [10]

      A K Ghosh, X Cheng, B Zhou. Org. Lett., 2012, 14(19): 5046~5049.

    11. [11]

      E Sekin, T Kumamoto, T Ishikawa et al. J. Org. Chem., 2004, 69: 2760~2767.

    12. [12]

      (a) H L Kabbe. Synthesis, 1978, 12: 886~887; (b) H L Kabbe, A Widdig. Angew. Chem. Int. Ed., 1982, 21: 247~256.

    13. [13]

      S E Kelly, B C Vandeplas. J. Org. Chem., 1991, 56(3): 1325~1327.

    14. [14]

      S Chandrasekhar, K Vijeender, K V Reddy. Tetrahed. Lett., 2005, 46: 6991~6993. 

    15. [15]

      (a) E Wallen, K Dahlen, M Grotli et al. Org. Lett., 2007, 9: 389~391; (b) F S Maria, N Pemberton, K Luthman et al. J. Org. Chem., 2009, 74: 2755~2759.

    16. [16]

      S K Sharma, V D Tripathi. Tetrahedron, 2010, 66: 9445~9449. 

    17. [17]

      P Y Chen, T P Wang, M Y Chiang et al. Tetrahedron, 2011, 67: 4155~4164. 

    18. [18]

      (a) V Kavala, C Lin, C Yao et al. Tetrahedron, 2012, 68: 1321~1329. (b) Y M Ren, C Cai, R C Yang. RSC Adv., 2013, 3: 7182~7204.

    19. [19]

      (a) F F Li, D J Atkinson, D P Furkert et al. Eur. J. Org. Chem., 2016, 1145~1155; (b) L F Tietze, S Jackenkroll, J Hierold. Chem. Eur. J., 2014, 20: 8628~8635; (c) T Qin, R P Johnson, J A Porco Jr. J. Am. Chem. Soc., 2011, 133: 1714~1717.

    20. [20]

      R A Bednar, J R Hadcock. J. Biol. Chem., 1988, 263: 9582~9588. 

    21. [21]

      K J Hodgetts. Tetrahed. Lett., 2001, 42(22): 3763~3766.

    22. [22]

       

    23. [23]

      (a) G Solladié, N Gehrold, J Maignan. Tetrahedron: Asymm., 1999, 10: 2739~2747; (b) S T Saengchantara, T W Wallace. Tetrahedron, 1990, 46: 6553~6564.

    24. [24]

      M Kawasaki, H Kakuda, M Goto. Tetrahedron: Asym., 2003, 14(11): 1529~1534. 

    25. [25]

      (a) M M Biddle, M Lin, K A Scheidt. J. Am. Chem. Soc., 2007, 129: 3830~3831; (b) A E Nibbs, K A Scheidt. Eur. J. Org. Chem., 2012, 3: 449~462.

    26. [26]

      (a) L J Wang, X H Liu, X M Feng et al. Angew. Chem., 2008, 120: 8798~8801; (b) L J Wang, X H Liu, X M Feng et al. Angew. Chem. Int. Ed., 2008, 47: 8670~8673.

    27. [27]

      (a) C Dittmer, G Raabe, L Hintermann. Eur. J. Org. Chem., 2007, 5886~5898; (b) L Hintermann, C Dittmer. Eur. J. Org. Chem., 2012, 5573~5584.

    28. [28]

      (a) J Chen, J M Chen, J Liao et al. J. Am. Chem. Soc.. 2010, 132(13) 4552~4553; (b) F Han, G Chen, J Liao et al. Eur. J. Org. Chem. 2011, 2928~2931.

    29. [29]

      T Korenaga, K Hayashi, Y Akaki et al. Org. Lett., 2011, 13(8), 2022~2025. 

    30. [30]

      M K Lemke, S Pia, F Petra et al. Angew. Chem. Int. Ed. 2013, 52, 11651~11655. 

    31. [31]

      Y L Zhang, Y Q Wang. Tetrahed. Lett., 2014, 55: 3255~3258.

    32. [32]

      J Liu, Z. Li, P Tong et al. J. Org. Chem., 2015, 80: 1632~1643. 

    33. [33]

      (a) A Vijayan, T V Baiju, E Jijy et al. Tetrahedron, 2016, 72: 4007~4015; (b) E Jijy, P Prakash, M Shimi et al. Chem. Commun., 2013, 49: 7349~7351.

    34. [34]

      S Emamia, Z Ghanbarimasir. Eur. J. Med. Chem., 2015, 93: 539~563. 

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    14. [14]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    15. [15]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    16. [16]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    17. [17]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(11)
  • Abstract views(1791)
  • HTML views(545)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return