Citation: LI Xiao-yun, ZHAO Rui-dong, QIN Jian-guang, WU Jin-hu. Co-combustion characteristics of municipal solid waste with coal gangue and its HCl emission[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1304-1309. shu

Co-combustion characteristics of municipal solid waste with coal gangue and its HCl emission

  • Corresponding author: WU Jin-hu, zrd_gscas@126.com
  • Received Date: 28 April 2016
    Revised Date: 24 June 2016

    Fund Project: The project was supported by the National Natural Science Foundation of China 51506212Shanxi Province Coal-based Key Technology Research and Development Program MD2014-03

Figures(5)

  • Co-firing of municipal RDF and coal gangue in existing coal gangue power station is a potential treatment way of municipal solid waste and coal gangue. The co-combustion characteristic of municipal solid waste (MSW) and coal gangue was investigated by thermogravimetric analyzer. The HCl emission in co-combustion of coal gangue with PVC, NaCl and MSW were also studied using a high-temperature tube furnace combustion system. The results show that the combustion characteristic of coal gangue can be improved obviously with blending of MSW, especially for devolatilization and ignition characteristics. In consideration of combustion characteristics, the MSW blending ratio of 20% is suggested. When the blending ratio of PVC or NaCl is low, the existence of coal gangue can inhibit the release of HCl in PVC while promote the release of HCl in NaCl. As the increase of blending ratio, the effect decreases gradually. In co-combustion of MSW and coal gangue, the release ratio and concentration of HCl is increased. When the MSW blending ratio is 10%, the HCl emission concentration is 56.22 mg/m3 which exceeds the national standard. Hence, the dechlorination measurement should be considered.
  • 加载中
    1. [1]

      China Statistical Yearbook[Z]. Beijing:China Statistics Press, 2006-2015.

    2. [2]

      ZHANGD Q, TANS K, GERSBERG RM. Municipal solid waste management in China:Status, problems and challenges[J]. J Environ Manage, 2010,91(8):1623-1633. doi: 10.1016/j.jenvman.2010.03.012

    3. [3]

      ZHOU H, MENG A H, LONG Y Q, LI Q H, ZHANG Y G. A review of dioxin-related substances during municipal solid waste incineration[J]. Waste Manage, 2015,36:106-118. doi: 10.1016/j.wasman.2014.11.011

    4. [4]

      ZHAO Ji-rui, ZHANG Ji, LIU Jia-hong. Synthesis and reduction of dioxin emissions in waste incineration process[J]. Environ Sci Technol, 2014,37(S2):101-104.  

    5. [5]

      LECKNER B. Co-combustion-A summary of technology[J]. Therm Sci, 2007,11(4):5-40. doi: 10.2298/TSCI0704005L

    6. [6]

      ZHAO Y, XING W, LU W J, ZHANG X, CHRISTENSEN T H. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China[J]. Waste Manage, 2012,32(10):1989-1998. doi: 10.1016/j.wasman.2012.05.012

    7. [7]

      XIAO H M, MA X Q, LIU K. Co-combustion kinetics of sewage sludge with coal and coal gangue under different atmospheres[J]. Energ Convers Manage, 2010,51(10):1976-1980. doi: 10.1016/j.enconman.2010.02.030

    8. [8]

      ZHANG Yue-jun, ZHANG Gui-ying, HU Yi-gong. The application of mixed coal silt and coal gangue combustion in CFB[J]. Energy Technol, 2007,28(3):189-190.  

    9. [9]

      ZHOU C C, LIU G J, FANG T, LAM P K S. Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue[J]. Bioresource Technol, 2015,175:454-462. doi: 10.1016/j.biortech.2014.10.129

    10. [10]

      CHEN Zheng-hua, WANG Xue-qian, SUN Jun. Analysis of urban waste and coal combustion characteristic[J]. Energy Conserv Technol, 2015,33(6):522-525.  

    11. [11]

      BAXTER L. Biomass-coal co-combustion:Opportunity for affordable renewable energy[J]. Fuel, 2005,84(10):1295-1302. doi: 10.1016/j.fuel.2004.09.023

    12. [12]

      JIN Y Q, LU L, MA X J, LIU H M, CHI Y, YOSHIKAWA K. Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor[J]. Appl Energy, 2013,102:563-570. doi: 10.1016/j.apenergy.2012.08.026

    13. [13]

      WANG Xian-hong. Study on the combustion and pollutant emission characteristics of steam coal blent with biomass[D]. Jinan:Shandong University, 2010.

    14. [14]

      KUPKA T, MANCINI M, IRMER M, WEBER R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel, 2008,87(12):2824-2837. doi: 10.1016/j.fuel.2008.01.024

    15. [15]

      LI Xiang-pai. Basic studyof emissionand controlofHCI on incinerating of typical MSW components[D]. Hangzhou:Zhejiang University, 2004.

    16. [16]

      MATSUDAA H, OZAWAA S, NARUSEA K, ITOA K, KOJIMAB Y, YANASEC T. Kinetics of HCl emission from inorganic chlorides in simulated municipal wastes incineration conditions[J]. Chem Eng Sci, 2005,60(2):545-552. doi: 10.1016/j.ces.2004.07.131

    17. [17]

      BOONSONGSUP L, IISA K, FREDERICK W J. Kinetics of the sulfation of NaCl at combustion conditions[J]. Ind Eng Chem Res, 1997,36(10):4212-4216. doi: 10.1021/ie9603225

    18. [18]

      GB18485-2014, Standard for pollution control on the municipal solid waste incineration[S].

    19. [19]

      LI Xiao-dong, YANG Zhong-can, YAN Jian-hua, LU Sheng-yong, NI Ming-jiang, CEN Ke-fa. Effects of chlorine on HCl and PCDD/Fs emission in a MSW incinerator[J]. J Eng Thermophys, 2003,24(6):1047-1050.  

  • 加载中
    1. [1]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    6. [6]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    10. [10]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    13. [13]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    14. [14]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(0)
  • Abstract views(1435)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return