Citation: Peng Rui, Zhang Jingjing, Du Chungui, Hua Yating. Progress in Preparation and Controlled Release Technology of Thermo-Sensitive Antibacterial Hydrogels[J]. Chemistry, ;2020, 83(1): 10-16. shu

Progress in Preparation and Controlled Release Technology of Thermo-Sensitive Antibacterial Hydrogels

  • Corresponding author: Du Chungui, chunguidu@163.com
  • Received Date: 15 August 2019
    Accepted Date: 20 October 2019

Figures(7)

  • Thermo-sensitive hydrogels are a class of intelligent polymer gels that undergo a phase change by sensing temperature changes. Preparation of antibacterial hydrogels by loading antibacterial agents or by antibacterial monomers is a hot spot in the fields of drug controlled release, tissue engineering and biological immunity in recent years. In this paper, the research progress in physical crosslinking and chemical crosslinking preparation technology of temperature-sensitive antibacterial hydrogels are reviewed. The control technology, such as the pore diameter, the preparation material and drug loading mode regulation is described. And the application of thermo-sensitive antibacterial hydrogel in controlled release technology, and especially the application prospect in the field of biomass materials are prospected.
  • 加载中
    1. [1]

      Scarpa J S, Mueller D D, Klotz I M. J. Am. Chem. Soc., 1967, 89(24):6024~6030. 

    2. [2]

      Koetting M C, Peters J T, Steichen S D, et al. Mater. Sci. Eng., 2015, 93:1~49. 

    3. [3]

      Wei J, Yu H, Liu H, et al. J. Mater. Sci., 2018, 53(17):12056~12064. 

    4. [4]

       

    5. [5]

      Salick D A, Kretsinger J K, Pochan D J, et al. J. Am. Chem. Soc., 2007, 129(47):14793~14799. 

    6. [6]

       

    7. [7]

      Shen J S, Xu B. Chem. Commun., 2011, 47:2577~2579. 

    8. [8]

      Archana D, Dutta J, Dutta P K. Int. J. Biol. Macromol., 2013, 57:193~203. 

    9. [9]

      Escobedo-Lozano A Y, Domard A, Velazquez C A, et al. Carbohydr. Polym., 2015, 115:707~714. 

    10. [10]

      Pentlavalli S, Chambers P, Sathy B N, et al. Macromol. Biosci., 2017, 17:1700118. 

    11. [11]

      Doring A, Birnbaum W, Kuckling D. Chem. Soc. Rev., 2013, 42(17):7391~420. 

    12. [12]

      Liow S S, Dou Q, Kai D, et al. Small, 2017, 13(7):1603404. 

    13. [13]

      Luckanagul J A, Pitakchatwong C, Bhuket P R N, et al. Carbohydr. Polym., 2018, 181:1119~1127. 

    14. [14]

      Ma C, Lu W, Yang X, et al. Adv. Funct. Mater., 2018, 28(7):1704568. 

    15. [15]

       

    16. [16]

      Chenite A, Chaput C, Wang D, et al. Biomaterials, 2000, 21(21):2155~2161. 

    17. [17]

       

    18. [18]

      Ahmed E M. J. Adv. Res., 2015, 6(2):105~121. 

    19. [19]

       

    20. [20]

      Yang B, Tang S, Ma C, et al. Nat. Commun., 2017, 8(1):2240. 

    21. [21]

       

    22. [22]

      Wei Z, Duan L, Zhang B, et al. Polymer, 2017, 112:333~341. 

    23. [23]

      Cheng W, Chen Y, Teng L, et al. J. Colloid Interf. Sci., 2018, 513:314~323. 

    24. [24]

      Kamoun E A, Kenawy E R S, Tamer T M, et al. Arab. J. Chem., 2015, 8(1):38~47. 

    25. [25]

      Sung J H, Hwang M R, Kim J O, et al. Int. J. Pharm., 2010, 392(1-2):232~240. 

    26. [26]

      Noori S, Kokabi M, Hassan Z M. J. Appl. Polym. Sci., 2018, 135(21):46311. 

    27. [27]

      Fullenkamp D E, Rivera J G, Gong Y K, et al. Biomaterials, 2012, 33(15):3783~3791. 

    28. [28]

      Peng N, Wang Y, Ye Q, et al. Carbohydr. Polym., 2016, 137:59~64. 

    29. [29]

       

    30. [30]

      Xu F J, Zhu Y, Liu F S. Bioconjug. Chem., 2010, 21(3):456~464. 

    31. [31]

       

    32. [32]

       

    33. [33]

      Jalalvandi E, Shavandi A. J. Mech. Behav. Biomed., 2019, 90:191~201. 

    34. [34]

      Wang Q, Feng Y, He M, et al. Macromol. Mater. Eng., 2018, 303:1700590. 

    35. [35]

      Roy S, Banerjee A. Soft Matter, 2011, 7(11):5300~5308. 

    36. [36]

      Bae Y H, Okano T, Hsu R, et al. Macromol. Rapid Commun., 1987, 8(10):481~485. 

    37. [37]

      Iseult L, Paolo D G, Dawson K A. J. Phys. Chem. B, 2005, 109(13):6257~6261. 

    38. [38]

      Pong F Y, Michelle L, Bell J R, et al. Langmuir, 2006, 22(8):3851~3857. 

    39. [39]

      Ramanan R M, Chellamuthu P, Tang L, et al. Biotechnol. Prog., 2010, 22(1):118~125. 

    40. [40]

      Mukai S R, Nishihara H, Shichi S, et al. Chem. Mater., 2004, 16(24):4987~4991. 

    41. [41]

       

    42. [42]

       

    43. [43]

       

    44. [44]

      Kojarunchitt T, Baldursdottir S, Dong Y D, et al. Eur. J. Pharm. Biopharm., 2015, 89:74~81. 

    45. [45]

      Bardajee G R, Hooshyar Z. J. Polym. Res., 2017, 24(3):49. 

    46. [46]

       

    47. [47]

      Giano M C, Ibrahim Z, Medina S H, et al. Nat. Commun., 2014, 5:4095. 

    48. [48]

       

    49. [49]

      Patrick C, Christine V. Pharm. Res., 2006, 23(7):1417~1450. 

    50. [50]

      Moghimi S M, Hunter A C, Murray J C. FASEB J., 2005, 19(3):311~330. 

    51. [51]

      Ji Q X, Zhao Q S, Deng J, et al. J. Mater. Sci., 2010, 21(8):2435~2442. 

    52. [52]

       

    53. [53]

      Gao L, Sun Q, Wang Y, et al. Polym. Adv. Technol., 2017, 28(1):35~40. 

    54. [54]

      Pakulska M M, Miersch S, Shoichet M S. Science, 2016, 351(6279):4750. 

    55. [55]

      De Vries M E, Boddé H E, Busscher H J, et al. J. Biomed. Mater. Res., 1988, 22(11):1023~1032. 

    56. [56]

      Dong Z, Le X, Li X, et al. Appl. Catal. B, 2014, 158:129~135. 

    57. [57]

       

    58. [58]

       

    59. [59]

      Ganguly S, Dash A K. Int. J. Pharm., 2003, 276(1-2):83~92.

    60. [60]

      Zhao J, Guo B L, Ma P X. RSC Adv., 2014, 4(34):17736~17742. 

    61. [61]

       

    62. [62]

      Wei J, Chen Y, Liu H, et al. Ind. Crops Products, 2016, 92:227~235. 

    63. [63]

      Yu H, Du C, Huang Q, et al. Bioresources, 2018, 13(2):2658~2669. 

    64. [64]

      Yu H, Du C, Liu H, et al. Bioresources, 2017, 12(4):8390~8401. 

    65. [65]

       

    66. [66]

       

    67. [67]

       

  • 加载中
    1. [1]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    2. [2]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    3. [3]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    4. [4]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    5. [5]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    8. [8]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    9. [9]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    10. [10]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    11. [11]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    12. [12]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    13. [13]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    14. [14]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    15. [15]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    16. [16]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    17. [17]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    18. [18]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(43)
  • Abstract views(2689)
  • HTML views(768)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return