Citation: LI Mei, SUN Gong-cheng, CHENG Xue-yun, LI Jia-jia, JIN Quan, XU Rong-sheng. Experimental study on desulfurization by ionic liquids/H2O2 system[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1042-1052. shu

Experimental study on desulfurization by ionic liquids/H2O2 system

  • Corresponding author: LI Mei, echolimei@126.com
  • Received Date: 20 May 2019
    Revised Date: 8 July 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21666001), North Minzu University-Level Scientific Research Project (2017HG04), North Minzu University-Level Major Project (ZDZX201803) and North Minzu University Research Platform Project (201707)the National Natural Science Foundation of China 21666001North Minzu University Research Platform Project 201707North Minzu University-Level Scientific Research Project 2017HG04North Minzu University-Level Major Project ZDZX201803

Figures(9)

  • Four different kinds of ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium bromide([Bmim]Br), 1-butyl-3-methylimidazolium tetrafluoroborate([Bmim]BF4), 1-butyl-3-methylimidazolium hydro-sulfate([Bmim]HSO4), and 1-butyl-3-methylimidazolium dihydrophosphate([Bmim]H2PO4) were selected to add to the H2O2 solution (30%), respectively, to obtain four mixed solutions. Then, two kinds of deashed high-sulfur coal (LS, QX) desulfurization experiments were tested with above mixed solutions under mild conditions, respectively. The contents of different sulfur forms in coal samples before and after desulfurization were determined by wet chemical method, and the coal samples before and after desulfurization were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and thermogravimetric (TG). The results show that the addition of ionic liquids can make the H2O2 oxidation desulfurization ability enhance, and pyrite sulfur and organic sulfide sulfur in coal are obviously removed. After treated by the ILs/H2O2 system, the small size particle decreases, the space among the particles increases, and the pits on the coal surface become obvious. Moreover, the thermogravimetric test results show that the total weight loss of the coal sample treated by the ILs/H2O2 system increases and the peak temperature of some volatile substances lowers.
  • 加载中
    1. [1]

      CHEN Wen-hui, LIU Jia, SUN Rui, LI Rang, LI Shuai. Study on chemical desulfurization of complex high-sulfur coal[J]. Coal Technol, 2018,37(9):371-374.  

    2. [2]

      WILKES J S. Properties of ionic liquid solvents for catalysis[J]. J Mol Catal A:Chem, 2004,214(1):11-17. doi: 10.1016/j.molcata.2003.11.029

    3. [3]

      WANG L Y, JIN G S, XU Y L. Desulfurization of coal using four ionic liquids with[HSO4]-[J]. Fuel, 2019,236(15):1181-1190.  

    4. [4]

      BUI T T L, NGUYEN D D, HO S V, NGUYEN B T, UONG H T N. Synthesis, characterization and application of some non-halogen ionic liquids as green solvents for deep desulfurization of diesel oil[J]. Fuel, 2017,191:54-61. doi: 10.1016/j.fuel.2016.11.044

    5. [5]

      TO T Q, SHAH K, TREMAIN P, SIMMONS B A, MOGHTADERI B, ATKIN R. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures[J]. Fuel, 2017,202(15):296-306.  

    6. [6]

      TIAN Y, MENG X, SHI L. Removal of dimethyl disulfide via extraction using imidazolium-based phosphoric ionic liquids[J]. Fuel, 2014,129(1):225-230.  

    7. [7]

      DHARASKAR S A, WASEWAR K L, VARMA M N, SHENDE D Z. Imidazolium ionic liquid as energy efficient solvent for desulfurization of liquid fuel[J]. Sep Purif Technol, 2015,155(26):101-109.  

    8. [8]

      SAIKIA B K, KHOUND K, BARUAH B P. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids[J]. Energ Convers Manage, 2014,81:298-305. doi: 10.1016/j.enconman.2014.02.043

    9. [9]

      GONG Ming-yue, LI Xiao-juan, ZHANG Mei, SONG Hua, HE Ying-ming. Preparation of ionic liquid supported metal- organic framework Py/MOF-199 and its adsorption desulfurization performance[J]. J Fuel Chem Technol, 2018,46(10):1175-1183. doi: 10.3969/j.issn.0253-2409.2018.10.004

    10. [10]

      CHEN Zong-ding, GONG Xu-zhong, WANG Zhi, WANG Yong-gang, ZHANG Shu, XU De-ping. Sulfur removal from ionic liquid assisted coal water slurry electrolysis in KNO3 system[J]. J Fuel Chem Technol, 2013,41(8):928-936. doi: 10.3969/j.issn.0253-2409.2013.08.005

    11. [11]

      XU Yong-liang, JIN Guo-song, WAN Lan-yun, SUN Yan. Experimental study on coal desulfurization within 1-butyl-3-methyl imidazole sulfate and hydrogen peroxide[J]. Ed Board J HPU(Nat Sci), 2018,6(4):22-29.  

    12. [12]

      AN Ying, LU Liang, LI Cai-meng, CHENG Shi-fu, GAO Guo-hua. Oxidative desulfurization catalyzed by molybdophosphate-based ionic liquid[J]. J Mol Catal(China), 2009,12:1222-1226.  

    13. [13]

      SAIKIA B K, KHOUND K, SAHU O P, BARUAH B P. Feasibility studies on cleaning of high sulfur coals by using ionic liquids[J]. J China Coal Soc, 2015,2(3):202-210.

    14. [14]

      GE Tao, ZHANG Ming-xu, MA Xiang-mei. XPS and FTIR spectroscopy characterization about the structure of coking coal in Xinyang[J]. Spectrosc Spect Anal, 2017,37(8):2406-2411.  

    15. [15]

      SAIKIA B K, DUTTA A M, BARUAH B P. Feasibility studies of de-sulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonication[J]. Fuel, 2014,123(1):12-18.  

    16. [16]

      ZHAO Zheng-fu, TANG Yue-gang, WEI Qiang, WANG Shao-qing, JIANG Di. Evolution characteristics of sulfur-bearing structures of low and medium rank coal with high organic sulfur content[J]. Coal Geol Explor, 2015,43(4):17-22. doi: 10.3969/j.issn.1001-1986.2015.04.004

    17. [17]

      LIU Yan-hua, CHE De-fu, XU Tong-mo. X-Ray photoelectron spectroscopy determination of the forms of sulfur in coal and Its chars[J]. J Xi'an Jiaotong Univ, 2004,38(1):101-104. doi: 10.3321/j.issn:0253-987X.2004.01.025

    18. [18]

      LI H L, ZHU W B, YANG J P, ZHANG M G, ZHAO J X, QU W Q. Sulfur abundant S/FeS2 for efficient removal of mercury from coal-fired power plants[J]. Fuel, 2018,232(15):476-484.  

    19. [19]

      SHAIDA M A, SEN A K, DUTTA R K. Alternate use of sulphur rich coals as solar photo-Fenton agent for degradation of toxic azo dyes[J]. J Clean Prod, 2018,195(10):1003-1014.  

    20. [20]

      QIN Yue-qiang, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Effects of adding CaO on the release and transformation of arsenic and sulfur during coal pyrolysis[J]. J Fuel Chem Technol, 2017,45(2):147-156. doi: 10.3969/j.issn.0253-2409.2017.02.003

    21. [21]

      ZHAO H L, BAI Z Q, BAI J, GUO Z X, KONG L X, LI W. Effect of coal particle size on distribution and thermal behavior of pyrite during pyrolysis[J]. Fuel, 2015,148(15):145-151.  

    22. [22]

      SAIKIA B K, DALMORA A C, CHOUDHURY R, DAS T, TAFFAREL S R, SILVA L F O. Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2[J]. Ultrason Sonochem, 2016,32:147-157. doi: 10.1016/j.ultsonch.2016.03.007

    23. [23]

      CUI C B, JIANG S G, KOU L W, WANG L Y, ZHANG W Q, WU Z G, WANG K, SHAO H. Effect of ionic liquids on the pyrolysis of coal[J]. Electron J Geotech Eng, 2016,21:5203-5213.  

  • 加载中
    1. [1]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    2. [2]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    5. [5]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    10. [10]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    15. [15]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    16. [16]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(17)
  • Abstract views(1026)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return