Citation: LI Feng-xu, WANG Xiao-fei, ZHENG Ying, CHEN Ji-xiang. Influence of metallic promoters on the performance of Ni/SiO2 catalyst in the hydrodeoxygenation of anisole[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 75-83. shu

Influence of metallic promoters on the performance of Ni/SiO2 catalyst in the hydrodeoxygenation of anisole

  • Corresponding author: CHEN Ji-xiang, jxchen@tju.edu.cn
  • Received Date: 6 June 2017
    Revised Date: 16 October 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21576193)the National Natural Science Foundation of China 21576193

Figures(8)

  • Ni/SiO2 and Ni-based bimetallic Ni30M/SiO2 catalysts (with a Ni/M atomic ratio of 30; M=Fe, Co, Cu, Zn and Ga) were prepared by the impregnation method and characterized by the means of H2-TPR, XRD, H2 chemisorption, NH3-TPD and N2 sorption; the effect of M promoters on the structure and performance Ni-based catalysts in the hydrodeoxygenation of anisole was investigated. The results indicated that the metallic promoters have a significant influence on the reducibility of nickel species, due to the interaction between M and Ni species, although the sizes of Ni-M bimetallic crystallites in Ni30M/SiO2 are similar to that of Ni crystallite in Ni/SiO2. Because of the interaction between Ni and M and the enrichment of certain M promoters on the surface of Ni-M bimetallic particles, the adsorption quantity of H2 on Ni30M/SiO2 is lower than that on Ni/SiO2. In addition, the Ni30M/SiO2 catalysts also have more acid sites (especially the weak ones) than Ni/SiO2. For the hydrodeoxygenation of anisole under 300℃, 0.1 MPa, weight hourly space velocity (WHSV) of anisole of 1.0 h-1 and H2/anisole molar ratio of 25, the Ni30M/SiO2 catalysts exhibit lower anisole conversion than Ni/SiO2, probably due to the lower H2 uptakes on the bimetallic catalysts. However, Ni30Ga/SiO2 and Ni30Zn/SiO2 give much higher selectivities to BTX (benzene, toluene and xylene) (81.7% and 76.8%, respectively) than Ni/SiO2 (71.5%). Meanwhile, Ni30Zn/SiO2 exhibits higher activity in methyl transfer and lower activity in C-C bond hydrogenolysis than other catalysts; owing to the high oxophilicity of Zn, from the aspects of increasing carbon yield and reducing H2 consumption, Ni30Zn/SiO2 is probably an appropriate catalyst in hydrodeoxygenation.
  • 加载中
    1. [1]

      BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy, 2012,38(2):68-94.  

    2. [2]

      SAIDI M, SAMIMI F, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2013,7(1):103-129.  

    3. [3]

      RUNNEBAUM R C, NIMMANWUDIPONG T, BLOCK D E, GATES B C. Catalytic conversion of compounds representative of lignin-derived bio-oils:A reaction network for guaiacol, anisole, 4-methylanisole, and cyclohexanone conversion catalysed by Pt/γ-Al2O3[J]. Catal Sci Technol, 2012,2:113-118. doi: 10.1039/C1CY00169H

    4. [4]

      HONKELA M L, BJÖRK J, PERSSON M. Computational study of the adsorption and dissociation of phenol on Pt and Rh surfaces[J]. Phys Chem Chem Phys, 2012,14(16):5849-5854. doi: 10.1039/c2cp24064e

    5. [5]

      GUTIERREZ A, KAILA R K, HONKELA M L, SLIOOR R, KRAUSE A O I. Hydrodeoxygenation of guaiacol on noble metal catalysts[J]. Catal Today, 2009,147(3/4):239-246.  

    6. [6]

      LIU C, SHAO Z, XIAO Z, WILLIAMS C T, LIANG C. Hydrodeoxygenation of benzofuran over silica-alumina-supported Pt, Pd, and Pt-Pd catalysts[J]. Energy Fuels, 2012,26(2):4205-4211.  

    7. [7]

      HONG D Y, MILLER S J, AGRAWAL P K, JONES C W. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts[J]. Chem Commun, 2010,46(7):1038-1040. doi: 10.1039/B918209H

    8. [8]

      JIN S H, XIAO Z H, LI C, CHEN X, WANG L, XING J C, LI W Z, LIANG C H. Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts[J]. Catal Today, 2014,234:125-132. doi: 10.1016/j.cattod.2014.02.014

    9. [9]

      LENG S, WANG X D, HE X B, LIU L, LIU Y E, ZHONG X, ZHUANG G L, WANG J G. NiFe/γ-Al2O3:A universal catalyst for the hydrodeoxygenation of bio-oil and its model compounds[J]. Catal Commun, 2013,41:34-37. doi: 10.1016/j.catcom.2013.06.037

    10. [10]

      SUN J M, AYMAN M K, ZHANG H, KOVARIK L. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. J Catal, 2013,306(1):47-57.  

    11. [11]

      DO P T M, FOSTER A J, CHEN J G, LOBO R F. Bimetallic effects in the hydrodeoxygenation of meta-cresol onγ-Al2O3 supported Pt-Ni and Pt-Co catalysts[J]. Green Chem, 2012,14(14):1388-1397.  

    12. [12]

      HAMM G, SCHMIDT T, BREITBACH J, FRANKE D, BECKER C, WANDELT K. The adsorption of benzene on Pd (111) and ordered Sn/Pd (111) surface alloys[J]. Surf Sci, 2004,562(1/3):170-182.  

    13. [13]

      BREITBACH J, FRANKE D, HAMM G, BECKER C, WANDELT K. Adsorption of benzene on ordered Sn/Pt (111) surface alloys[J]. Surf Sci, 2002,507-510(2):18-22.  

    14. [14]

      SHI D, ARROYO-RAMIREZ L, VOHE J M. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates:Reaction of anisole on Pt and PtZn catalysts[J]. J Catal, 2016,340:219-226. doi: 10.1016/j.jcat.2016.05.020

    15. [15]

      BYKOVA M V, ERMAKOV Y D, KAICHEV V V, BULAVCHEMKO O A, SARAEV A A, LEBEDEV M Y, YAKOVLEV V A. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading:Guaiacol hydrodeoxygenation study[J]. Appl Catal B:Environ, 2012,113-114(1):296-307.  

    16. [16]

      ARDIYANTI A R, KHROMOVA S A, VENDERBOSCH R H, YAKOVLEV V A, HREERES H J. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on aδ-Al2O3 support[J]. Appl Catal B:Environ, 2012,117-118:105-117. doi: 10.1016/j.apcatb.2011.12.032

    17. [17]

      LEI N, PRISCILLA M, FABIO B, WEI A, SOOKNOI T, RESASCO D E. Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts[J]. J Mol Catal A:Chem, 2014,388-389:47-55. doi: 10.1016/j.molcata.2013.09.029

    18. [18]

      KHROMVA S A, SMIRNOV A A, BULAVCHENK O A, SARAEV A A, KAICHEV V V, RESHETNIKOV S I, YAKOVEM V A. Anisole hydrodeoxygenation over Ni-Cu bimetallic catalysts:The effect of Ni/Cu ratio on selectivity[J]. Appl Catal A:Gen, 2014,470(2):261-270.  

    19. [19]

      DELATTE L C, SANTOS M, MEDINA J A. Structure of Metallic Catalysts[M]. New York:Academic Press, 1975, 72(72):417-425.

    20. [20]

      LIU P, NÊRSKOV J K. Ligand and ensemble effects in adsorption on alloy surfaces[J]. Phys Chem Chem Phys, 2001,3(11):3814-3818.

    21. [21]

      MILE B, STIRLING D, ZAMMITT M A, LOVELL A, WEBB M. The location of nickel oxide and nickel in silica-supported catalysts:Two forms of "NiO" and the assignment of temperature-programmed reduction profiles[J]. J Catal, 1989,20(2):217-229.  

    22. [22]

      LI K, WANG R, CHEN J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels, 2011,25(3):854-863. doi: 10.1021/ef101258j

    23. [23]

      ROBERTSON S D, MCNICOL B D, BAAS J H, KOLET SC, JENKINS JW. Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction[J]. J Catal, 1975,37(3):424-431. doi: 10.1016/0021-9517(75)90179-7

    24. [24]

      ROGATIS L D, MONTINI T, COGNIGNI A. Methane partial oxidation on NiCu-based catalysts[J]. Catal Today, 2009,145(1/2):176-185.  

    25. [25]

      GA OW, LI C M, CHEN H, WU M, HE S, WEI M, EVANS D G, D X. Supported nickel-iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O[J]. Green Chem, 2014,16(3)1560. doi: 10.1039/c3gc41939h

    26. [26]

      ISHIHARA T, EGUCHI K, ARA H. ChemInform abstract:hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni, and Ni-Fe bimetallic catalysts[J]. Appl Catal, 1987,18(51):225-238.  

    27. [27]

      PANDEY D, DEO G. Promotional effects in alumina and silica supported bimetallic Ni-Fe catalysts during CO2 hydrogenation[J]. J Mol Catal A:Chem, 2014,382(382):23-30.  

    28. [28]

      MENG F H, ZHONG P Z, LI Z, CUI X X, ZHENG H Y. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation[J]. J Chem, 2014(5):1-72.  

    29. [29]

      YU X, CHEN J, REN T. Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons[J]. RSC Adv, 2014,4(87):46427-46436. doi: 10.1039/C4RA07932A

    30. [30]

      HUANG Chuan-jing, ZHENG Xiao-ming. Study on CH4/CO2 reforming reaction on Supported Nickel Catalyst Ⅱ. Effect of Co addition on the performance of Ni/Al2O3catalyst[J]. J Huaibei Normal Univ(Nat Sci Ed), 2000,21(1):43-53.  

    31. [31]

      WANG X F, WANG F, CHEN M Y, REN J. Studies on nickel-based bimetallic catalysts for hydrodeoxygenation[J]. J Fuel Chem Technol, 2005,33(5):612-616.  

    32. [32]

      LI C M, CHEN Y D, ZHANG S T, ZHOU J Y, WANG F, HE S, WEI M, EVANS D G, D X. Nickel-gallium intermetallic nanocrystal catalysts in the semihydrogenation of phenylacetylene[J]. ChemCatChem, 2014,6(3):824-831. doi: 10.1002/cctc.201300813

    33. [33]

      SITTHISA S, WEI A, RESASCO D E. Selective conversion of furfural to methylfuran over silica-supported Ni-Fe bimetallic catalysts[J]. J Catal, 2011,284(1):90-101. doi: 10.1016/j.jcat.2011.09.005

    34. [34]

      HUYNH T M, ARMBRUSTER U, POHL M M, SCHNEIDER M, RADNIK J, HOANG D-L, PHAN B M Q, NGUYEN D A, MARTIN A. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts[J]. ChemCatChem, 2014,6(7):1940-1951. doi: 10.1002/cctc.v6.7

    35. [35]

      GANDARIA I, REQUIES J, ARIAS P L, ARMBRUSTER U, MARTIN A. Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3 catalysts[J]. J Catal, 2013,290(12):79-89.  

    36. [36]

      FELIX S, FRANK A P, THOMAS B, RASMUS Z S, CLAUS H C, JENS K N. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene[J]. Science, 2008,320(5881):1320-1322. doi: 10.1126/science.1156660

    37. [37]

      SHARAFUTDINO I, ELKJAER C F, DE CARVALHO H W P, GARDINI D, CHIARELLO G G, DAMSGAARD C D, WAGNER J B, GRUNWALDT J D, DAHL S, CHORKENDORFF I. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol[J]. J Catal, 2014,320:77-88. doi: 10.1016/j.jcat.2014.09.025

    38. [38]

      LANGE, ADOLPH N. Lange's Handbook of Chemistry[M]. New York:Mcgraw-Hill Book Company, 1999, 5(4):687-688.

    39. [39]

      CHEN Y J, CHEN J X. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts:Promotional effect of In[J]. Appl Surf Sci, 2016,387:16-27. doi: 10.1016/j.apsusc.2016.06.067

    40. [40]

      HADJⅡVANOV K, MIHAYLOV M, KLISSURSKI D, STEFANOV P, ABADJIEVA N, VASSILEVA , MINTCHEV L. Characterization of Ni/SiO2 catalysts prepared by successive deposition and reduction of Ni2+ ions[J]. J Catal, 1999,185(2):314-323. doi: 10.1006/jcat.1999.2521

    41. [41]

      ZHU X, LOBBAN L L, MALLINSON R G, REASASCO D E. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst[J]. J Catal, 2011,281(1):21-29. doi: 10.1016/j.jcat.2011.03.030

    42. [42]

      FERRARI M, MAGGI R, DELMON B, GRANGE P. Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygenation activity of a CoMo/Carbon catalyst[J]. J Catal, 2001,198(1):47-55. doi: 10.1006/jcat.2000.3103

    43. [43]

      GONZALEZBORJA M A, RESASCO D E. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts[J]. Energy Fuels, 2011,25(9):4155-4162. doi: 10.1021/ef200728r

    44. [44]

      WANG H, MALE J, WANG Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal, 2013,3(5):1047-1070. doi: 10.1021/cs400069z

    45. [45]

      FURIMSKY E. Catalytic hydrodeoxygenation[J]. Appl Catal A:Gen, 2000,199(2):147-190. doi: 10.1016/S0926-860X(99)00555-4

    46. [46]

      ROMERO Y, RICHARD F, BRUNET S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts:Promoting effect and reaction mechanism[J]. Appl Catal B:Environ, 2010,98(98):213-223.  

    47. [47]

      PHUONG T M, ANDREW J F, CHEN J, RAUL F L. Bimetallic effects in the hydrodeoxygenation of meta-cresol onγ-Al2O3 supported Pt-Ni and Pt-Co catalysts[J]. Green Chem, 2012,14(5):1388-1397. doi: 10.1039/c2gc16544a

    48. [48]

      YANG Y X, OCHOA-HERNANDEZ C, O'SHEA V A D L P, PIZARRO P, CORONADO J M, SERRANO D P. Effect of metal-support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts[J]. Appl Catal B:Environ, 2014,145(1):91-100.  

    49. [49]

      CHEN J X, SHI H, LI L, LI K L. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B:Environ, 2014,144(2):870-884.

    50. [50]

      SHI D M, LISANDRA A R, JOHN M V. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates:Reaction of anisole on Pt and PtZn catalysts[J]. J Catal, 2006,340:219-226.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(5)
  • Abstract views(991)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return