Citation: YU Xin-lei, PAN Wei-tong, GAO Rui, GAO De-zhi, LIU Xia, DAI Zheng-hua, YU Guang-suo, WANG Fu-chen. Selective oxidation of H2S over the LaCoO3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 973-979. shu

Selective oxidation of H2S over the LaCoO3 catalyst

  • Corresponding author: WANG Fu-chen, wfch@ecust.edu.cn
  • Received Date: 25 April 2019
    Revised Date: 24 June 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China(21776086)the National Natural Science Foundation of China 21776086

Figures(8)

  • A series of LaCoO3 catalysts were prepared by sol-gel method and characterized by XRD, BET and XPS; the effect of calcination temperature and content of surfactant PEG-6000 and PEG-20000 on the catalytic activity of LaCoO3 in the selective oxidation of H2S to sulfur was investigated. The results illustrated that adding surfactant PEG-6000 and PEG-20000 can significantly improve the catalytic activity of LaCoO3 in H2S oxidation; the LaCoO3 catalyst prepared by adding 0.30 g PEG-20000 in the solution of 0.02 mol La(NO3)3 + 0.02 mol Co(NO3)2 and calcination at 650 ℃ exhibits the highest activity in H2S oxidation. Over this catalyst and under the optimum reaction temperature of 260 ℃, the conversion of H2S reaches 96.10%, with a selectivity of 93.77% to sulfur.
  • 加载中
    1. [1]

      WIHEEB A D, SHAMSUDIN I K, AHMAD M A, MURAT M N, KIM J, OTHMAN M R. Present technologies for hydrogen sulfide removal from gaseous mixtures[J]. Rev Chem Eng, 2013,29(6):449-470.

    2. [2]

      HAO Z. H2S selective catalytic oxidation:Catalysts and processes[J]. ACS Catal, 2015,5(2):1053-1067. doi: 10.1021/cs501476p

    3. [3]

      GARCIA-ARRIAGA V, ALVAREZ-RAMIREZ J, AMAYA M, SOSA E. H2S and O2 influence on the corrosion of carbon steel immersed in a solution containing 3 M diethanolamine[J]. Corros Sci, 2010,52(7):2268-2279. doi: 10.1016/j.corsci.2010.03.016

    4. [4]

      HAO Zheng-ping, DOU Guang-yu, ZHANG Xin, QU Si-qiu. Current research situation of H2S selective catalytic oxidation technologies and catalysts[J]. Chin J Environ Sci, 2012,33(8):2909-2916.  

    5. [5]

      LAGAS J A, BORSBOOM J, BERBEN P H. Selective oxidation catalyst improve claus process[J]. Oil Gas J (United States), 1988,86/41(41):68-71.

    6. [6]

      GEMMINGEN U V, LAHNE U. The Linde Clinsulf® process for sulfur recovery:Modelling and simulation[J]. Gas Sep Purif, 1994,8(4):241-246. doi: 10.1016/0950-4214(94)80004-9

    7. [7]

      NGUYEN P, NHUT J M, EDOUARD D, PHAM C, LEDOUX M J, PHAM HUU C. Fe2O3/β-SiC:A new high efficient catalyst for the selective oxidation of H2S into elemental sulfur[J]. Catal Today, 2009,141(3/4):397-402.  

    8. [8]

      LEE J D, JIN H J, PARK N K, RYU S O, LEE T J. A study on selective oxidation of hydrogen sulfide over zeolite-NaX and-KX catalysts[J]. Korean J Chem Eng, 2005,22(1):36-41. doi: 10.1007/BF02701459

    9. [9]

      BINEESH K V, KIM M I, LEE G H, SELVARAJ M, PARK D W. Catalytic performance of vanadia-doped alumina-pillared clay for selective oxidation of H2S[J]. Appl Clay Sci, 2013,74:127-134. doi: 10.1016/j.clay.2012.04.023

    10. [10]

      KALINKIN P, KOVALENKO O, KHANAEV V, BORISOVA E. Direct oxidation of hydrogen sulfide over vanadium catalysts:I. Kinetics of the reaction[J]. Kinet Catal, 2015,56(1):106-114.  

    11. [11]

      LI Chang-bo, SUN Xiao-li, ZHAO Guo-zheng. Progress of preparation and application of lanthanum nickel oxide composite oxides[J]. Appl Chem Ind, 2015,4:736-738.  

    12. [12]

      ZHANG F, ZHANG X, JIANG G, LI N, HAO Z, QU S. H2S selective catalytic oxidation over Ce substituted La1-xCexFeO3 perovskite oxides catalyst[J]. Chem Eng J, 2018,348:831-839. doi: 10.1016/j.cej.2018.05.050

    13. [13]

      CHEN J, SHEN M, WANG X, WANG J, SU Y, ZHEN Z. Catalytic performance of NO oxidation over LaMeO3 (Me=Mn, Fe, Co) perovskite prepared by the sol-gel method[J]. Catal Commun, 2013,37(13):105-108.  

    14. [14]

      SEYFI B, BAGHALHA M, KAZEMIAN H. Modified LaCoO3 nano-perovskite catalysts for the environmental application of automotive CO oxidation[J]. Chem Eng J, 2009,148(2):306-311.  

    15. [15]

      DING J C, LI H Y, CAI Z X, WANG X X, GUO X. Near room temperature CO sensing by mesoporous LaCoO3 nanowires functionalized with Pd nanodots[J]. Sens Actuators B, 2016,222:517-524. doi: 10.1016/j.snb.2015.08.099

    16. [16]

      LIU H, SUN H, XIE R, ZHANG X, ZHENG K, PENG T, WU X, ZHANG Y. Substrate-dependent structural and CO sensing properties of LaCoO3 epitaxial films[J]. Appl Surf Sci, 2018,442:742-749. doi: 10.1016/j.apsusc.2018.02.221

    17. [17]

      DONG Yan-chun, LI Yang, ZHANG Jin-gang, DAI Zheng-hua, YU Guang-suo, WANG Fu-chen. Catalytic performance of V2O5/Ti-Ce-PILC in the selective oxidation of H2S[J]. J Fuel Chem Technol, 2016,44(11):1401-1408. doi: 10.3969/j.issn.0253-2409.2016.11.018 

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    3. [3]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    10. [10]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

Metrics
  • PDF Downloads(8)
  • Abstract views(767)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return