Citation: ZHONG Liu, LI Xin, FANG Qing-yan, YU Sheng-hui, XU Hao, ZHANG Cheng, CHEN Gang. Catalytic performance of the Mn-Ce catalysts in lean methane combustion prepared by a redox co-precipitation method[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 378-384. shu

Catalytic performance of the Mn-Ce catalysts in lean methane combustion prepared by a redox co-precipitation method

  • Corresponding author: FANG Qing-yan, qyfang@mail.hust.edu.cn
  • Received Date: 16 October 2018
    Revised Date: 17 December 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China 51676076the Research and Development Fund of SKLCC FSKLCC1805The project was supported by the National Natural Science Foundation of China (51676076) and the Research and Development Fund of SKLCC (FSKLCC1805)

Figures(7)

  • A series of Mn-Ce catalysts with different Mn/Ce ratios were prepared by a redox co-precipitation method and characterized by N2 sorption, XRD, XRF and XPS; their catalytic performance in lean methane combustion was investigated. The results indicate that the Mn/Ce ratio has a great influence on the activity of Mn-Ce catalyst in lean methane combustion. With an increase of the Mn/Ce ratio from 3:7 to 9:1, the activity of the Mn-Ce catalyst increases gradually and the reaction temperature needed for a methane conversion of 50% (t50) decreases from 501 ℃ to 446 ℃; however, a further increase in the Mn/Ce ratio may lead to a decrease in the catalytic activity. The performance of Mn-Ce catalyst is related to many factors such as the surface area and the concentration of higher valence manganese (Mn4+) species, lower valence cerium (Ce3+) species and lattice oxygen; in particular, KMn8O16 is of benefit to enhancing the activity of Mn-Ce catalyst.
  • 加载中
    1. [1]

      REAY D, SMITH P, AMSTEL A. Methane and Climate Change[M]. 2010.

    2. [2]

      CARGNELLO M, JAÉN J J D, GARRIDO J C H, BAKHMUTSKY K, MONTINI T, GÁMEZ J J C, GORTE R J, FORNASIERO P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3[J]. Science, 2012,337(6095):713-717. doi: 10.1126/science.1222887

    3. [3]

      KERR R A. A quick (partial) fix for an ailing atmosphere[J]. Science, 2012,335(6065):156-156. doi: 10.1126/science.335.6065.156

    4. [4]

      STOLAROFF J K, BHATTACHARYYA S, SMITH C A, BOURCIER W L, CAMERON-SMITH P J, AINES R D. Review of methane mitigation technologies with application to rapid release of methane from the arctic[J]. Environ Sci Technol, 2012,46(12):6455-6469. doi: 10.1021/es204686w

    5. [5]

      GUO Chun-xiu, LI Qiang. Experimental study on catalytic combustion of ventilation air methane[J]. Min Saf Environ Prot, 2014,41(4):1-3. doi: 10.3969/j.issn.1008-4495.2014.04.001

    6. [6]

      LI Xu. Progress of development and utilization of coalbed methane in the world[J]. Coal Process Compr Util, 2006(6):41-45. doi: 10.3969/j.issn.1005-8397.2006.06.016

    7. [7]

      OBER J A. Mineral commodity summaries 2018[R]. Reston, VA: U.S. Geological Survey, 2018.

    8. [8]

      MONAI M, MONTINI T, MELCHIONNA M, DUCHOŇ T, KÚŠ P, CHEN C, TSUD N, NASI L, PRINCE KC, VELTRUSKÁ K, MATOLÍN V, KHADER M M, GORTE R J, FORNASIERO P. The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion[J]. Appl Catal B:Environ, 2017,202:72-83. doi: 10.1016/j.apcatb.2016.09.016

    9. [9]

      CHEN J, ARANDIYAN H, GAO X, LI J. Recent advances in catalysts for methane combustion[J]. Catal Surv Asia, 2015,19(3):140-171. doi: 10.1007/s10563-015-9191-5

    10. [10]

      WANG B, ALBARRACÍN-SUAZO S, PAGÁN-TORRES Y, NIKOLLA E. Advances in methane conversion processes[J]. Catal Today, 2017,285:147-158. doi: 10.1016/j.cattod.2017.01.023

    11. [11]

      ZHANG Y, QIN Z, WANG G, ZHU H, DONG M, LI S, WU Z, LI Z, WU Z, ZHANG J. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature[J]. Appl Catal B:Environ, 2013,129(2):172-181.  

    12. [12]

      HU Z, QIU S, YOU Y, GUO Y, GUO Y L, WANG L, ZHAN W C, LU G Z. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane[J]. Appl Catal B:Environ, 2018,225:110-120. doi: 10.1016/j.apcatb.2017.08.068

    13. [13]

      SHENG Z Y, HU Y F, XUE J M, WANG X M, LIAO W P. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature[J]. Environ Technol, 2012,33(21):2421-2428. doi: 10.1080/09593330.2012.671370

    14. [14]

      CYBULSKI A. Catalytic wet air oxidation:Are monolithic catalysts and reactors feasible?[J]. Ind Eng Chem Res, 2007,46(12):4007-4033. doi: 10.1021/ie060906z

    15. [15]

      DING Z Y, LI L X, WADE D, GLOYNA E F. Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst[J]. Ind Eng Chem Res, 1998,37(5):1707-1716. doi: 10.1021/ie9709345

    16. [16]

      FIUK M M, ADAMSKI A. Activity of MnOx-CeO2 catalysts in combustion of low concentrated methane[J]. Catal Today, 2015,257:131-135. doi: 10.1016/j.cattod.2015.01.029

    17. [17]

      SHI L M, CHU W, QU F F, LUO S H. Low-temperature catalytic combustion of methane over MnOx-CeO2 mixed oxide catalysts:Effect of preparation method[J]. Catal Lett, 2007,113(1/2):59-64.  

    18. [18]

      ZHANG H, YANG W L, LI D, WANG X Y. Influence of preparation method on the performance of Mn-Ce-O catalysts[J]. React Kinet Catal Lett, 2009,97(2):263-268. doi: 10.1007/s11144-009-0024-2

    19. [19]

      LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. morphology effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. J Fuel Chem Technol, 2018,46(5):615-624. doi: 10.3969/j.issn.0253-2409.2018.05.015 

    20. [20]

      LIU Chang-chun, YU Jun-jie, JIANG Zheng, TAO Yan-xin, HAO Zheng-ping, HE Xu-wen. Methane catalytic combustion on Ce1-xMnxO2-a mixed oxide catalysts[J]. Chin J Inorg Chem, 2007(2):217-224. doi: 10.3321/j.issn:1001-4861.2007.02.005

    21. [21]

      ZHANG P, LU H, ZHOU Y, ZHANG L, WU Z, YANG S, SHI H, ZHU Q, CHEN Y, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun, 2015,68446. doi: 10.1038/ncomms9446

    22. [22]

      WU Y, LU Y, SONG C, MA Z, XING S, GAO Y. A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene[J]. Catal Today, 2013,201:32-39. doi: 10.1016/j.cattod.2012.04.032

    23. [23]

      WANG X, LIU Y, ZHANG Y, ZHANG T, CHANG H, ZHANG Y, JIANG L. Structural requirements of manganese oxides for methane oxidation:XAS spectroscopy and transition-state studies[J]. Appl Catal B:Environ, 2018,229:52-62. doi: 10.1016/j.apcatb.2018.02.007

    24. [24]

      ARENA F, GUMINA B, LOMBARDO AF, ESPRO C, PATTI A, SPADARO L, SPICCIA L. Nanostructured MnOx catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen:Part I. Effects of Ce and Fe addition on structure and reactivity[J]. Appl Catal B:Environ, 2015,162:260-267. doi: 10.1016/j.apcatb.2014.06.054

    25. [25]

      ARENA F, TRUNFIO G, NEGRO J, FAZIO B, SPADARO L. Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel "redox-precipitation" route[J]. Chem Mater, 2007,19(9):2269-2276. doi: 10.1021/cm070198n

    26. [26]

      XU J, LI P, SONG X F, HE C H, YU J G, HAN Y F. Operando raman spectroscopy for determining the active phase in one- dimensional Mn1-xCexO2±y nanorod catalysts during methane combustion[J]. J Phys Chem Lett, 2015,1(10):1648-1654.  

    27. [27]

      PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. In situ combustion synthesis of structured Cu-Ce-O and Cu-Mn-O catalysts for the production and purification of hydrogen[J]. Appl Catal B:Environ, 2006,66(3):168-174.  

    28. [28]

      LI Yun-xia. Reasearch on treatment of caron disulfide and toluene gas by low temperature plasma-manganese oxide[D]. Heifei: Heifei University of Technology, 2016. 

    29. [29]

      JIRÁTOVÁ K, MIKULOVÁ J, KLEMPA J, GRYGAR T, BASTL Z, KOVANDA F. Modification of Co-Mn-Al mixed oxide with potassium and its effect on deep oxidation of VOC[J]. Appl Catal A:Gen, 2009,361(1):106-116.  

    30. [30]

      KUMAR M, YUN J H, BHATT V, SINGH B, KIM J, KIM J S, KIM B S, LEE CY. Role of Ce3+ valence state and surface oxygen vacancies on enhanced electrochemical performance of single step solvothermally synthesized CeO2 nanoparticles[J]. Electrochim Acta, 2018,284:709-720. doi: 10.1016/j.electacta.2018.07.184

    31. [31]

      CHEN X, SHEN Y F, SUIB S L, O'Young C L. Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants[J]. Chem Mater, 2002,14(2):940-948. doi: 10.1021/cm000868o

    32. [32]

      HAN Y F, CHEN L, RAMESH K, WIDJAJA E, CHILUKOTI S, KESUMAWINATA SURJAMI I, CHEN J. Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts[J]. J Catal, 2008,253(2):261-268. doi: 10.1016/j.jcat.2007.11.010

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(12)
  • Abstract views(1267)
  • HTML views(290)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return