Citation: Zhang ZHANG, MA Ju-mei, LI Wei-cheng, ZHOU Qi, SHI Wen-ju, LI Huai-zhu, BAI Jin, BAI Zong-qing, LI Wen. Sintering characteristics of Wucaiwan coal ash and effect of different additives[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 263-270. shu

Sintering characteristics of Wucaiwan coal ash and effect of different additives

  • Corresponding author: BAI Jin, stone@sxicc.ac.cn
  • Received Date: 20 September 2018
    Revised Date: 7 December 2018

    Fund Project: joint foundation of Natural Science Foundation of China and Xinjiang Province U1703252National Key Research and Development project of China 2017 YFB0602401The project was supported by joint foundation of Natural Science Foundation of China and Xinjiang Province (U1703252) and National Key Research and Development project of China (2017 YFB0602401)

Figures(8)

  • The effect of different additives on sintering characteristics of Wucaiwan coal ash was studied by TMA combined with XRD, in-situ hot stage microscope and FactSage thermodynamic software. The results show that the additives could improve the sintering problems of coal ash, but the effect of different additives on sintering characteristics is various. For example, the sintering temperature increases by 70 ℃ when 10% of the sand is added, but the sintering temperature does not increase by addition of coal gangue in the range of 0-15%. Further studies show that the variation of sintering characteristics can be attributed to the change of initial liquid phase temperature, compositions, content and decomposition temperature of sulfates in coal ash.
  • 加载中
    1. [1]

      YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gener, 2010,39(8):38-40. doi: 10.3969/j.issn.1002-3364.2010.08.038

    2. [2]

      QIU Zhong, LIANG Jin-lin. Circulating fluidized bed boiler burning Xinjiang Wucaiwan area in Zhundong coal measures[J]. Appl Energy Technol, 2012(12):16-19. doi: 10.3969/j.issn.1009-3230.2012.12.005

    3. [3]

      LU Yuan-mei. Study on the effect of mix-burning with Wucaiwan coal in main power plants in Urumuqi[J]. Coal Qual Technol, 2011(1):10-12. doi: 10.3969/j.issn.1007-7677.2011.01.004

    4. [4]

      DONG Ming-gang. Prevention measures and the influence of slagging, fouling and corrosion of high-sodium coal on the heat surfaces of boilers[J]. Therm Power Gener, 2008,37(9):35-39. doi: 10.3969/j.issn.1002-3364.2008.09.010

    5. [5]

      CHAO L, YOU C F, ZHANG D K. Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace[J]. Energy, 2014,69:562-570. doi: 10.1016/j.energy.2014.03.050

    6. [6]

      CHEN, ZHANG, HE, LIANG, YANG-xin. Effects of alkali salts on the fouling properties of coal ash in weak reducing atmosphere[J]. Chin J Power Eng, 2017,37(2):98-104.  

    7. [7]

      WANG Qin-hui, JIE Tao, LI Xiao-min, LUO Zhong-yang, JING Ni-jie, CEN Ke-fa. Experiments of the effects of reaction atmosphere on coal ash sintering temperature[J]. J Fuel Chem Technol, 2010,30(1):17-22. doi: 10.3969/j.issn.0253-2409.2010.01.004

    8. [8]

      VASSILEV S, VASSILEVA C, BAXTER D, ANDERSEN S. Relationships between chemical and mineral composition of coal and their potential applications as genetic indicators. Part 1. Chemical characteristics[J]. Geol Balc, 2011,39:21-41.  

    9. [9]

      LI Jun-jie, XIONG Biao, ZHANG Tai, HUANG Xiao-hong, LU Ke, LIU Chao-hui, ZHENG Chu-guang. Experimental study on ash deposition of zhundong coal[J]. J Eng Therm, 2017,38(8):1790-1794.  

    10. [10]

      WANG X B, XU Z X, WEI B, ZHANG L, TAN H Z, YANG T. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    11. [11]

      SHEN Ming-ke, QIU Kun-zan, HUANG Zhen-yu, WANG Zhi-hua, LIU Jian-zhong. Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J Fuel Chem Technol, 2015,43(9):1044-1051. doi: 10.3969/j.issn.0253-2409.2015.09.004 

    12. [12]

      GAO Shan-shan, JIN jing, LIU Dun-yu, WANG Yong-zhen, YAO Yu-xiang, KOU Xue-sen. Effect of vermiculite composite additives on the anti-slagging behaviorduring combustion of Zhundong coal[J]. Chem Ind Eng Prog, 2017,36(9):3280-3286.  

    13. [13]

      LIU Da-hai, ZHANG Shou-yu, TU Sheng-kang, JIN Tao, SHI Da-zhong, SHI Deng-yu, PEI Yu-feng. Transformation and release of sodium in Wucaiwan coal during combustion[J]. Chem Ind Eng Prog, 2015,34(3):705-709.  

    14. [14]

      TU Sheng-kang, ZHANG Shou-yu, SHI Da-zhong, JIN Tao, YANG Qing-ning, LIU Da-hai, PEI Yu-feng. Effect of additive on emission of sodium in high sodium coal during pyrolysis[J]. Coal Convers, 2016,39(1):31-34. doi: 10.3969/j.issn.1004-4248.2016.01.007

    15. [15]

      LI J B, ZHU M M, ZHANG Z Z, ZHANG D K. A new criterion for determination of coal ash sintering temperature using the pressure-drop technique and the effect of ash mineralogy and geochemistry[J]. Fuel, 2016,179:71-78. doi: 10.1016/j.fuel.2016.03.078

    16. [16]

      WALL T F, CREELMAN R A, GUPTA R P, GUPTA S K, COIN C, LOWE A. Coal ash fusion temperatures-New characterization techniques, and implications for slagging and fouling[J]. Prog Energy Combust Sci, 1998,24:345-353. doi: 10.1016/S0360-1285(98)00010-0

    17. [17]

      YAN T, KONG L, BAI J, BAI Z Q, LI W. Thermomechanical analysis of coal ash fusion behavior[J]. Chem Eng Sci, 2016,147:74-82. doi: 10.1016/j.ces.2016.03.016

    18. [18]

      GUPTA S K, GUPTA R P, BRYANT G W, WALL T F. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels[J]. Fuel, 1998,77:1195-1201. doi: 10.1016/S0016-2361(98)00016-7

    19. [19]

      ALOTOOM A Y, ELLIOTT L K, WALL T F, MOGHTADERI B. Measurement of the sintering kinetics of coal ash[J]. Energy & Fuels, 2000,14:97-109.  

    20. [20]

      ALOTOOM A Y, BRYANT G W, ELLIOTT L K, SKRIFVARS B J, HUPA M, WALL T F. Experimental options for determining the temperature for the onset of sintering of coal ash[J]. Energy Fuels, 1999,14:41-49.  

    21. [21]

      LEE S, JUNG B, LEE N, NAM W, LEE S J, YUN Y. Application of FactSage (R) thermodynamic modeling for predicting the ash transformation with temperatures under partial slagging entrained flow coal gasification condition[J]. Mater Test, 2018,60:163-172. doi: 10.3139/120.111138

    22. [22]

      WANG L, SKJEVRAK G, HUSTAD J E, MORTEN G. Sintering characteristics of sewage sludge ashes at elevated temperatures[J]. Fuel Process Technol, 2012,96:88-97. doi: 10.1016/j.fuproc.2011.12.022

    23. [23]

      LIU Jia-li, SU Guo-qing, ZHANG Xiao-hong, YANG Zhong-can, YAO Wei. Evaluation method for ash fouling characteristics of coals with high alkali content[J]. Therm Power Gener, 2016,45(1):9-13. doi: 10.3969/j.issn.1002-3364.2016.01.009

    24. [24]

      WANG Hui, WEI Xing, QIN Xue-Jian, WANG Lin, ZHANG Shuai, WU Shao-hua. Experimental investigation of Zhundong ash deposits characteristics under different ashing temperatures using an online image system[J]. J Harbin Inst Technol, 2018,50(1):82-89.  

    25. [25]

      KWON O H, MESSING G L. Kinetic analysis of solution-precipitation during liquid-phase sintering of alumina[J]. J Am Ceram Soc, 2010,73:275-281.  

  • 加载中
    1. [1]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    10. [10]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    11. [11]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    12. [12]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    13. [13]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    16. [16]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    17. [17]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(9)
  • Abstract views(1414)
  • HTML views(228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return