Citation: HAN Jun, LIANG Yang-shuo, ZHAO Bo, XIONG Zi-jiang, QIN Lin-bo, CHEN Wang-sheng. In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1356-1364. shu

In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion

  • Corresponding author: ZHAO Bo, zhaobo87@wust.edu.cn
  • Received Date: 17 August 2020
    Revised Date: 8 September 2020

    Fund Project: The National Key Research and Development Program of China 2018YFB0605102The project was supported by The National Key Research and Development Program of China (2018YFB0605102)

Figures(5)

  • Blended coal combustion technology was extensively used in coal-fired power plants in China. In order to investigate the in-situ reaction between trace elements and minerals in fly ash during blended coal combustion, a bituminous (HLH), anthracite (ZW) and the blended coal of these two parent coals were combusted in a drop tube furnace at 1150 ℃. The ash gathered at high temperature segment (HTA) and low temperature segment (LTA) of the furnace were analyzed, respectively. The results indicated that the retention rates of arsenic in HTA were lower than that in LTA, which suggested that arsenic would be re-absorbed by ash during cooling down of flue gas. For HTA the retention rates of arsenic in ash of ZW, Z3H1, Z1H1, Z1H3, HLH were 60.31%, 26.85%, 13.29%, 20.23% and 36.11%, respectively. The arsenic was more difficult to be captured by HTA of blended coal than that of parent coal. As for selenium, the retention rates in HTA of five coal samples were 24.68%, 23.60%, 20.58%, 15.19% and 38.13%, which had the same retention law as arsenic. The results of X-ray diffraction (XRD) demonstrated that the mineral morphology was changed obviously during blended coal combustion. Unlike parent coal, mullite appeared in HTA of blended coal, and peak of mullite was enhanced with proportion of ZW increased in blended coal. It was consistent with the trend of retention of As and Se in HTA. It illustrated that change of mineral species and in-situ reaction between minerals and trace elements significantly affected emission of arsenic and selenium during blended coal combustion.
  • 加载中
    1. [1]

      XUAN W W, WANG H N, XIA D H. Depolymerization mechanism of CaO on network structure of synthetic coal slags[J]. Fuel Process Technol, 2019,187:21-27.  

    2. [2]

      WANG S B, LUO K L, WANG X, SUN Y Z. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories[J]. Environ Pollut, 2016,209:107-113.  

    3. [3]

      ZHAO S L, DUAN Y F, CHEN L, LI Y N, YAO T, LIU S, LIU M, LU J H. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant[J]. Environ Pollut, 2017,226(404)411.  

    4. [4]

      HAN J, ZHANG L, ZHAO B, QIN L B, WANG Y, XING F T. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption[J]. Ind Crops Prod, 2019,128:290-297.  

    5. [5]

      LEELARUNGROJ K, LIKITLERSUANG S, CHOMPOORAT T, JANJAROEN D. Leaching mechanisms of heavy metals from fly ash stabilised soils[J]. Waste Manage Res, 2018,36(7):616-623.  

    6. [6]

      EVANDRO D S, LI S W, LETUZIA D O, JULIA G, DONG X L, ANN C W, TIMOTHY G T, LENA Q M. Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios[J]. J Hazard Mater, 2018,341:66-74.  

    7. [7]

      GB/T13233-2011, Emission standard of air pollutants for thermal power plants[S].

    8. [8]

      GB3095-2012, Ambient air quality standards[S].

    9. [9]

      TANG Q, LIU G J, YAN Z C, RUOYU S. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2012,95:334-339.  

    10. [10]

      CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88(3):539-546.  

    11. [11]

      GERALD P H, FRANK E H, NARESH S, ZHAO J M. Speciation of arsenic and chromium in coal and combustion ash by XAFS spectroscopy[J]. Fuel Process Technol, 1994,39(1):47-62.  

    12. [12]

      ROBERT A Z, ANDREA L F, GREGORY P M, ISABELLE K B. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama[J]. Fuel, 2007,86(4):560-572.  

    13. [13]

      YAN R, DANIEL G, GILLES F, WANG Y M. Behavior of selenium in the combustion of coal or coke spiked with Se[J]. Combust Flame, 2004,138(1):20-29.  

    14. [14]

      CONSTANCE S, BRYDGER V O, JOST O L W, ADEL S. Modeling the behavior of selenium in pulverized-coal combustion systems[J]. Combust. Flame, 2010,157(11):2095-2105.

    15. [15]

      ZHOU C C, LIU G J, XU Z Y, SUN H, PAUL K S L. Retention mechanisms of ash compositions on toxic elements (Sb, Se and Pb) during fluidized bed combustion[J]. Fuel, 2018,213:98-105.  

    16. [16]

      ANNA A R, OLEG K, EVGUENⅡ I K, DAVID T P, WAYNE S. In situ evaluation of inorganic matrix effects on the partitioning of three trace elements (As, Sb, Se) at the outset of coal combustion[J]. Energy Fuels, 2011,25(9/10):4290-4298.  

    17. [17]

      KUO J H, LIN C L, WEY M Y. Effect of particle agglomeration on heavy metals adsorption by Al- and Ca-based sorbents during fluidized bed incineration[J]. Fuel Process Technol, 2011,92(10):2089-2098.  

    18. [18]

      IKEDA M, MAKINO H, MORINAGA H, HIGASHIYAMA K, KOZAI Y. Emission characteristics of NOx and unburned carbon in fly ash during combustion of blends of bituminous/sub-bituminous coals[J]. Fuel, 2003,82(15):1851-1857.  

    19. [19]

      KUROSE R, IKEDA M, MAKINO H. Combustion characteristics of high ash coal in a pulverized coal combustion[J]. Fuel, 2001,80(10):1447-1455.  

    20. [20]

      ZHU C, TU H, BAI Y, MA D, ZHAO Y G. Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal[J]. Fuel, 2019,254115730.  

    21. [21]

      DUAN L B, SUN H C, JIANG Y, EDWARD A, ZHAO C S. Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5 MWth pilot-scale circulating fluidised bed combustor burning an anthracite and a bituminous coal[J]. Fuel Process Technol, 2016,146:1-8.  

    22. [22]

      HAN J K, YU D X, WU J Q, YU X, LIU F Q, WANG J H, XU M H. Fine ash formation and slagging eeposition during combustion of Silicon-rich biomasses and their blends with a low-rank coal[J]. Energy Fuels, 2019,33(7):5875-5882.  

    23. [23]

      GB3058-2008, Determination of arsenic in coal[S].

    24. [24]

      GB/T16415-2008, Determination of selenium in coal-Hydride generation-atomic absorption method[S].

    25. [25]

      ZOU C, WANG C B, LIU H M, WANG H F, ZHANG Y. Effect of volatile and ash contents in coal on the volatilization of arsenic during isothermal coal combustion[J]. Energy Fuels, 2017,31(11):12831-12838.  

    26. [26]

      LIU H M, WANG C B, ZHANG Y, HUANG X Z, GUO Y C, WANG J W. Experimental and modeling study on the volatilization of arsenic during co-combustion of high arsenic lignite blends[J]. Appl Therm Eng, 2016,108:1336-1343.  

    27. [27]

      LIU H M, WANG C B, ZOU C, ZHANG Y, WANG J W. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017,203:152-161.  

    28. [28]

      DÍAZ-SOMOANO M, LÓPEZ-ANTÓN M A, HUGGINS F, MARTÍNEZ-TARAZONA M R. The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere[J]. J Hazard Mater, 2010,173(1):450-454.  

    29. [29]

      ROSALES C, BARRERA-DÍAZ C E, BILYEU B, VARELA-GUERRERO V. A review on Cr(Ⅵ) adsorption using inorganic materials[J]. Am J Anal Chem, 2013,4(7):8-16.  

    30. [30]

      ANN G K, GEORGE K. The silicate/non-silicate distribution of metals in fly ash and its effect on solubility[J]. Fuel, 2004,83(17):2285-2292.  

    31. [31]

      YANG Y H, HU H Y, XIE K, HUANG Y D, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019,37(4):4443-4450.  

    32. [32]

      TIAN C, GUPTA R, ZHAO Y C, ZHANG J Y. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature[J]. Energy Fuels, 2016,30(8):6201-6209.  

    33. [33]

      SEAMES W, WENDT J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007,31(2):2839-2846.  

    34. [34]

      SENIOR C L, BOOL L E, SRINIVASACHAR S, PEASE B R, PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J]. Fuel Process Technol, 2000,63(2):149-165.  

    35. [35]

      ISKHAKOV K A, SCHASTLIVTSEV E L, KONDRATENKO Y A. Classification of the mineral components of coal[J]. Coke Chem, 2009,51(12):485-487.  

    36. [36]

      ZHAN Z H, LIU X W, YAO H. Excluded mineral matter transformation mechanism and kinetics during coal combustion[J]. J Combust Sci Technol, 2007,13(4):355-359.  

    37. [37]

      ZHANG R, LEI K, YE B Q, CAO J, LIU D. Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method[J]. Sci China: Technol Sci, 2018,61(11):1723-1731.  

    38. [38]

      SENIOR C L, FLAGAN R C. Ash vaporization and condensation during combustion of a suspended coal particle[J]. Aerosol Sci Technol, 2007,1(4):371-383.  

    39. [39]

      HELBLE J, NEVILLE M, SAROFIM A F. Aggregate formation from vaporized ash during pulverized coal combustion[J]. Symp Combust, 1988,21(1):411-417.  

    40. [40]

      LI Y W, ZHAO C S, XIN W, LU D F. Theoretical and experimental study of aggregation and removal of fuel coal PM10 in magnetic fields[J]. J Eng Therm Energy Power, 2007,22(2):176-180.

    41. [41]

      SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel, 2020,259116249.  

    42. [42]

      WU X J, ZHANG Z X, CHEN Y S, ZHOU T, FAN J J, PIAO G L, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010,91(11):1591-1600.  

    43. [43]

      SHAH P, STREZOV V, STEVANOV C, NELSON P F. Speciation of arsenic and selenium in coal combustion products[J]. Energy Fuels, 2007,21(2):506-512.  

    44. [44]

      CONTRERAS M L, GARCÍA-FRUTOS F J, BAHILLO A. Oxy-fuel combustion effects on trace metals behaviour by equilibrium calculations[J]. Fuel, 2013,108:474-483.  

    45. [45]

      HAN J, XIONG Z J, ZHAO B, LIANG Y S, WANG Y, QIN L B. A prediction of arsenic and selenium emission during the process of bituminous and lignite coal co-combustion[J/OL]. Chem Pap, 2020. DOI: 10.1007/s11696-020-01058-9.

    46. [46]

      SENIOR C L, BOOL L E, MORENCY J R. Laboratory study of trace element vaporization from combustion of pulverized coal[J]. Fuel Process Technol, 2000,63(2):109-124.  

    47. [47]

      ITSKOS G, KOUKOUZAS N, VASILATOS C, MEGREMI I, MOUTSATSOU A. Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash[J]. J Hazard Mater, 2010,183(1):787-792.  

    48. [48]

      FURUZONO T, NAKAJIMA T, FUJISHIMA H, TAKANASHI H, OHKI A. Behavior of selenium in the flue gas of pulverized coal combustion system: Influence of kind of coal and combustion conditions[J]. Fuel Process Technol, 2017,167:388-394.  

    49. [49]

      FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471.  

    50. [50]

      QUEROL X, FERNANDEZ-TURIEL J L, LÓPEZ-SOLER A. Trace elements in coal and their behaviour during combustion in a large power station[J]. Fuel, 1995,74(3):331-343.  

    51. [51]

      LI Y Z, TONG H L, ZHUO Y Q, CHEN C H, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of product layer on mass transfer[J]. Environ Sci Technol, 2006,40(13):4306-4311.  

  • 加载中
    1. [1]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    4. [4]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    5. [5]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    6. [6]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    7. [7]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    10. [10]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    11. [11]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    12. [12]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    13. [13]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    14. [14]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    15. [15]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    16. [16]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    17. [17]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    18. [18]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    19. [19]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    20. [20]

      Yunqing ZhuKaiyue WenXuequan WanGaigai DongJunfeng Niu . High efficiency conversion of low concentration nitrate boosted with amorphous Cu0 nanorods prepared via in-situ reconstruction. Chinese Chemical Letters, 2025, 36(6): 110399-. doi: 10.1016/j.cclet.2024.110399

Metrics
  • PDF Downloads(2)
  • Abstract views(430)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return