In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion
- Corresponding author: ZHAO Bo, zhaobo87@wust.edu.cn
Citation:
HAN Jun, LIANG Yang-shuo, ZHAO Bo, XIONG Zi-jiang, QIN Lin-bo, CHEN Wang-sheng. In-situ reaction between arsenic/selenium and minerals in fly ash at high temperature during blended coal combustion[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(11): 1356-1364.
XUAN W W, WANG H N, XIA D H. Depolymerization mechanism of CaO on network structure of synthetic coal slags[J]. Fuel Process Technol, 2019,187:21-27.
WANG S B, LUO K L, WANG X, SUN Y Z. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories[J]. Environ Pollut, 2016,209:107-113.
ZHAO S L, DUAN Y F, CHEN L, LI Y N, YAO T, LIU S, LIU M, LU J H. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant[J]. Environ Pollut, 2017,226(404)411.
HAN J, ZHANG L, ZHAO B, QIN L B, WANG Y, XING F T. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption[J]. Ind Crops Prod, 2019,128:290-297.
LEELARUNGROJ K, LIKITLERSUANG S, CHOMPOORAT T, JANJAROEN D. Leaching mechanisms of heavy metals from fly ash stabilised soils[J]. Waste Manage Res, 2018,36(7):616-623.
EVANDRO D S, LI S W, LETUZIA D O, JULIA G, DONG X L, ANN C W, TIMOTHY G T, LENA Q M. Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios[J]. J Hazard Mater, 2018,341:66-74.
GB/T13233-2011, Emission standard of air pollutants for thermal power plants[S].
GB3095-2012, Ambient air quality standards[S].
TANG Q, LIU G J, YAN Z C, RUOYU S. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2012,95:334-339.
CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88(3):539-546.
GERALD P H, FRANK E H, NARESH S, ZHAO J M. Speciation of arsenic and chromium in coal and combustion ash by XAFS spectroscopy[J]. Fuel Process Technol, 1994,39(1):47-62.
ROBERT A Z, ANDREA L F, GREGORY P M, ISABELLE K B. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama[J]. Fuel, 2007,86(4):560-572.
YAN R, DANIEL G, GILLES F, WANG Y M. Behavior of selenium in the combustion of coal or coke spiked with Se[J]. Combust Flame, 2004,138(1):20-29.
CONSTANCE S, BRYDGER V O, JOST O L W, ADEL S. Modeling the behavior of selenium in pulverized-coal combustion systems[J]. Combust. Flame, 2010,157(11):2095-2105.
ZHOU C C, LIU G J, XU Z Y, SUN H, PAUL K S L. Retention mechanisms of ash compositions on toxic elements (Sb, Se and Pb) during fluidized bed combustion[J]. Fuel, 2018,213:98-105.
ANNA A R, OLEG K, EVGUENⅡ I K, DAVID T P, WAYNE S. In situ evaluation of inorganic matrix effects on the partitioning of three trace elements (As, Sb, Se) at the outset of coal combustion[J]. Energy Fuels, 2011,25(9/10):4290-4298.
KUO J H, LIN C L, WEY M Y. Effect of particle agglomeration on heavy metals adsorption by Al- and Ca-based sorbents during fluidized bed incineration[J]. Fuel Process Technol, 2011,92(10):2089-2098.
IKEDA M, MAKINO H, MORINAGA H, HIGASHIYAMA K, KOZAI Y. Emission characteristics of NOx and unburned carbon in fly ash during combustion of blends of bituminous/sub-bituminous coals[J]. Fuel, 2003,82(15):1851-1857.
KUROSE R, IKEDA M, MAKINO H. Combustion characteristics of high ash coal in a pulverized coal combustion[J]. Fuel, 2001,80(10):1447-1455.
ZHU C, TU H, BAI Y, MA D, ZHAO Y G. Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal[J]. Fuel, 2019,254115730.
DUAN L B, SUN H C, JIANG Y, EDWARD A, ZHAO C S. Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5 MWth pilot-scale circulating fluidised bed combustor burning an anthracite and a bituminous coal[J]. Fuel Process Technol, 2016,146:1-8.
HAN J K, YU D X, WU J Q, YU X, LIU F Q, WANG J H, XU M H. Fine ash formation and slagging eeposition during combustion of Silicon-rich biomasses and their blends with a low-rank coal[J]. Energy Fuels, 2019,33(7):5875-5882.
GB3058-2008, Determination of arsenic in coal[S].
GB/T16415-2008, Determination of selenium in coal-Hydride generation-atomic absorption method[S].
ZOU C, WANG C B, LIU H M, WANG H F, ZHANG Y. Effect of volatile and ash contents in coal on the volatilization of arsenic during isothermal coal combustion[J]. Energy Fuels, 2017,31(11):12831-12838.
LIU H M, WANG C B, ZHANG Y, HUANG X Z, GUO Y C, WANG J W. Experimental and modeling study on the volatilization of arsenic during co-combustion of high arsenic lignite blends[J]. Appl Therm Eng, 2016,108:1336-1343.
LIU H M, WANG C B, ZOU C, ZHANG Y, WANG J W. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017,203:152-161.
DÍAZ-SOMOANO M, LÓPEZ-ANTÓN M A, HUGGINS F, MARTÍNEZ-TARAZONA M R. The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere[J]. J Hazard Mater, 2010,173(1):450-454.
ROSALES C, BARRERA-DÍAZ C E, BILYEU B, VARELA-GUERRERO V. A review on Cr(Ⅵ) adsorption using inorganic materials[J]. Am J Anal Chem, 2013,4(7):8-16.
ANN G K, GEORGE K. The silicate/non-silicate distribution of metals in fly ash and its effect on solubility[J]. Fuel, 2004,83(17):2285-2292.
YANG Y H, HU H Y, XIE K, HUANG Y D, LIU H, LI X, YAO H, NARUSE I. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst, 2019,37(4):4443-4450.
TIAN C, GUPTA R, ZHAO Y C, ZHANG J Y. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature[J]. Energy Fuels, 2016,30(8):6201-6209.
SEAMES W, WENDT J O L. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007,31(2):2839-2846.
SENIOR C L, BOOL L E, SRINIVASACHAR S, PEASE B R, PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J]. Fuel Process Technol, 2000,63(2):149-165.
ISKHAKOV K A, SCHASTLIVTSEV E L, KONDRATENKO Y A. Classification of the mineral components of coal[J]. Coke Chem, 2009,51(12):485-487.
ZHAN Z H, LIU X W, YAO H. Excluded mineral matter transformation mechanism and kinetics during coal combustion[J]. J Combust Sci Technol, 2007,13(4):355-359.
ZHANG R, LEI K, YE B Q, CAO J, LIU D. Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method[J]. Sci China: Technol Sci, 2018,61(11):1723-1731.
SENIOR C L, FLAGAN R C. Ash vaporization and condensation during combustion of a suspended coal particle[J]. Aerosol Sci Technol, 2007,1(4):371-383.
HELBLE J, NEVILLE M, SAROFIM A F. Aggregate formation from vaporized ash during pulverized coal combustion[J]. Symp Combust, 1988,21(1):411-417.
LI Y W, ZHAO C S, XIN W, LU D F. Theoretical and experimental study of aggregation and removal of fuel coal PM10 in magnetic fields[J]. J Eng Therm Energy Power, 2007,22(2):176-180.
SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel, 2020,259116249.
WU X J, ZHANG Z X, CHEN Y S, ZHOU T, FAN J J, PIAO G L, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010,91(11):1591-1600.
SHAH P, STREZOV V, STEVANOV C, NELSON P F. Speciation of arsenic and selenium in coal combustion products[J]. Energy Fuels, 2007,21(2):506-512.
CONTRERAS M L, GARCÍA-FRUTOS F J, BAHILLO A. Oxy-fuel combustion effects on trace metals behaviour by equilibrium calculations[J]. Fuel, 2013,108:474-483.
HAN J, XIONG Z J, ZHAO B, LIANG Y S, WANG Y, QIN L B. A prediction of arsenic and selenium emission during the process of bituminous and lignite coal co-combustion[J/OL]. Chem Pap, 2020. DOI: 10.1007/s11696-020-01058-9.
SENIOR C L, BOOL L E, MORENCY J R. Laboratory study of trace element vaporization from combustion of pulverized coal[J]. Fuel Process Technol, 2000,63(2):109-124.
ITSKOS G, KOUKOUZAS N, VASILATOS C, MEGREMI I, MOUTSATSOU A. Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash[J]. J Hazard Mater, 2010,183(1):787-792.
FURUZONO T, NAKAJIMA T, FUJISHIMA H, TAKANASHI H, OHKI A. Behavior of selenium in the flue gas of pulverized coal combustion system: Influence of kind of coal and combustion conditions[J]. Fuel Process Technol, 2017,167:388-394.
FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471.
QUEROL X, FERNANDEZ-TURIEL J L, LÓPEZ-SOLER A. Trace elements in coal and their behaviour during combustion in a large power station[J]. Fuel, 1995,74(3):331-343.
LI Y Z, TONG H L, ZHUO Y Q, CHEN C H, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of product layer on mass transfer[J]. Environ Sci Technol, 2006,40(13):4306-4311.
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Haixia Wu , Kailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Yunqing Zhu , Kaiyue Wen , Xuequan Wan , Gaigai Dong , Junfeng Niu . High efficiency conversion of low concentration nitrate boosted with amorphous Cu0 nanorods prepared via in-situ reconstruction. Chinese Chemical Letters, 2025, 36(6): 110399-. doi: 10.1016/j.cclet.2024.110399
Schematic diagram of the DTF used for the combustion tests